| 研究生: |
江秋滿 Chiang, Chiu-Man |
|---|---|
| 論文名稱: |
以基於分子馬達之藍相液晶於可光調控三維光子超結構之研究 Photo-Tunable 3D Photonic Superstructures in Molecular-Motor-Based Blue Phase Liquid Crystals |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 藍相液晶 、分子馬達 、光致與熱致異構化 、膽固醇液晶 、科索圖案 |
| 外文關鍵詞: | blue phase liquid crystal, chiral molecular motor, photoisomerization, cholesteric liquid crystal, Kossel diagram |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,藍相液晶相關研究在液晶界中持續發展,主要在於其可經由自組裝產生獨特的三維週期性奈米超分子結構,此結構可引致選擇性布拉格反射特性,除了擁有較窄的光子能隙外,其可外部調控性與快速反應使藍相液晶具備強大的應用潛能。因此,本論文著重以手性分子馬達材料作為有效改變藍相系統三維光子結構之高度光敏手性媒介,藉由適當控制紫外激發光與樣品溫度來控制藍相液晶晶格與反射顏色變化,讓藍相樣品之可光控反射波段涵蓋超廣波段範圍,並具備可重複可逆光控性與高度反射色飽和度。
本論文之第一部分主要探討具有不同配向(無配向及水平配向)之藍相樣品反射特性與溫度之間關係,實驗結果發現藍相反射波長隨溫度下降,有先藍移再紅移之連續變化趨勢(亦即先dλBP /dT > 0再dλBP /dT < 0),研究證明與兩種手性材料之螺旋扭轉力與溫度之相異關係有關。第二部分為探討此兩種藍相樣品於受紫外光照射時,於非動態平衡和平衡狀態下反射特性之變化,實驗結果發現藍相反射波帶會隨紫外光照光時間與照光強度而紅移,而停止照光之後,反射波帶會回復至原位置。當紫外光照射藍相樣品時,由分子馬達之光致異構化效應主導之下,使樣品照光區之有效螺旋扭轉力下降,導致藍相晶格變大而產生反射波帶從藍光區大量紅移至近紅外光區之現象。此外,當紫外光停止照射後,由分子馬達之熱致異構化效應主導之下,樣品之有效螺旋扭轉力逐漸恢復而增強,致使藍相晶格逐漸恢復而變小,反射波段也逐漸恢復而藍移回初始的藍光區。實驗中,藍相反射顏色之可光調控範圍幾乎涵蓋整個可見光區與部分紅外光區,最大可紅移波段範圍可包含483.40 nm至864.89 nm。另外,實驗結果亦顯示紫外光照光時間過長將引致無配向與水平配向之藍相樣品因有效螺旋力過低而分別相變至膽固醇液晶之焦錐與平面結構,藉此找出本藍相樣品於可重複光控要求下之適當照光條件。第三部分為藍相樣品於動態平衡狀態下,探討紫外光照光強度與藍相反射波長及科索圖案之對應關係,實驗結果證明照光過程藍相一直維持在藍相I之結構,同時亦證明第一部分實驗中觀察到在dλBP /dT > 0與dλBP /dT < 0兩溫度區的藍相皆屬於藍相I。最後本論文量測藍相液晶樣品之可光控可逆與重複性及反射色之色度圖,其可高度光控重複性及廣大反射色域使本論文之藍相液晶系統具備強大的應用潛力,包含應用於光控液晶雷射、光控顯示器、光感測器等光電元件上。
In recent years, the unique optical properties of blue phase liquid crystals (BPLC) characterized by three-dimensional (3D) periodic nanostructures have attracted much attention among researchers investigating liquid crystals (LCs). Apart from its photonic bandgap (PBG) properties of selective Bragg reflection, the external controllability and fast response capabilities of the blue phase make it extremely attractive for various photonic applications. This research aims to study the maximization of the isomerization ability of light-responsive chiral molecular motors to effectively modulate the 3D photonic structure of the BPLC system and further modulate its PBG.
For the experiments in this study, nonaligned and parallel-aligned BPLC samples are prepared and two different working temperatures are chosen to investigate the differences of these sample conditions during ultraviolet (UV)-controlling. When the BPLC sample is irradiated with UV light, the trans-cis photoisomerization of molecular motors causes a decrease in the effective helical twisting power (HTP) in the illuminated region of the sample. This leads to an expansion of the lattices and a significant red-shift of the PBG from the blue region of visible light to the near-infrared (NIR) region. Furthermore, due to the thermal cis-trans-back isomerization of molecular motors, the effective HTP of the sample gradually recovers after the cessation of UV irradiation, resulting in the recovery of BPLC lattices and the blue-shift of PBG. In addition, the sample also exhibits stable multiple reversibility and repeatability of optical tunability under multiple UV exposures without phase transition. Prolonged UV irradiation can cause the nonaligned and parallel-aligned BPLC samples to transform into focal conic and planar structures of cholesteric liquid crystal (CLC) due to insufficient effective HTP.
This study also investigates the relationship between UV irradiation intensity, the reflection wavelength, and Kossel diagrams of the BPLC under dynamic equilibrium conditions. Experimental results confirm that the sample can maintain the BPI phase during the entire UV irradiation process. This thesis further measures the chromaticity diagram of the reflection colors of the BPLC samples during the UV-controlling. The broad reflection color gamut and excellent light-controllable characteristics of the BPLC in this study highlight its significant potential applications in the areas of light-controllable LC lasers, light-modulating displays, photodetectors, and other optoelectronic devices, to name a few.
1. Y. Yang, L. Wang, H. Yang, and Q. Li, “3D chiral photonic nanostructures based on blue‐phase liquid crystals,” Small Science 1(6), 2100007 (2021).
2. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64−68 (2002).
3. S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid‐crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002−3006 (2013).
4. M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, and H. Yang, “Asymmetric tunable photonic bandgaps in self‐organized 3D nanostructure of polymer‐stabilized blue phase I modulated by voltage polarity,” Adv. Func. Mater. 27(46), 1702261 (2017).
5. K. R. Schlafmann and T. J. White, “Retention and deformation of the blue phases in liquid crystalline elastomers,” Nat. Commun. 12(1), 4916 (2021).
6. T. H. Lin, Y. Li, C. T. Wang, H. C. Jau, C. W. Chen, C. C. Li, H. K. Bisoyi, T. J. Bunning and Q. Li, “Red, green and blue reflections enabled in an optically tunable self‐organized 3D cubic nanostructured thin film,” Adv. Mater. 25(36), 5050−5054 (2013).
7. S.-A. Jiang, C.-H. Wu, T.-S. Mo, S.-Y. Huang, J.-D. Lin, and C.-R. Lee, “All-optically controllable photonic crystals based on chiral-azobenzene-doped blue phase liquid crystals,” Crystals 10(10), 906 (2020).
8. B. L. Feringa, “In control of motion: from molecular switches to molecular motors,” Acc. Chem. Res. 34(6), 504−513 (2001).
9. A. S. Lubbe, N. Ruangsupapichat, G. Caroli, and B. L. Feringa, “Control of rotor function in light-driven molecular motors,” J. Org. Chem. 76(21), 8599−8610 (2011).
10. Y. S. Zhang, Z. Q. Wang, W. C. Chuang, S. A. Jiang, T. S. Mo, J. D. Lin, and C. R. Lee, “Programmable Engineering of Sunlight-Fueled, Full-Wavelength-Tunable, and Chirality-Invertible Helical Superstructures,” ACS Appl. Mater. Interfaces, 13(46), 55550−55558 (2021).
11. F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9(1), 421–441 (1888).
12. O. Lehmann, “Über fliessende krystalle,” Z. Phys. Chem. 4(1), 462–472 (1889).
13. H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
14. S. Chandrashekar, Liquid crystals (Cambridge University Press, 2020).
15. C. Bahr, and H.-S. Kitzerow, Chirality in liquid crystals (Springer, 2001).
16. G. Vertogen, and W. H. De Jeu, Thermotropic liquid crystals, fundamentals (Springer Science & Business Media, 2012).
17. P.-G. De Gennes, and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
18. D. Ingo, Textures of liquid crystals (John Wiley & Sons, 2003), pp. 70–71.
19. P. J. Collings, and M. Hird, Introduction to liquid crystals chemistry and physics (CRC Press, 2017).
20. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, 1990).
21. R. Ozaki, “Simple model for estimating band edge wavelengths of selective reflection from cholesteric liquid crystals for oblique incidence,” Phys. Rev. E 100, 012708 (2019)
22. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
23. E. Hecht, Optics (Pearson Education India, 2012), pp. 351–360.
24. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
25. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Techonl. 1(1), 51–61 (2005).
26. 王才彥,「利用高分子穩固藍相液晶製作可寬頻帶空間調控光子能隙及雷射輸出元件」,國立成功大學光電研究所碩士論文(2014)。
27. F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discussions of the Faraday Society 25, 19–28 (1958).
28. D. Coates and G. W. Gray, “Optical studies of the amorphous liquid-cholesteric liquid crystal transition: The “blue phase”,” Phys. Lett. 45A, 115–116 (1973).
29. H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond. 128, 99–117 (2008).
30. A. Yoshizawa, ‘‘Liquid crystal oligomers exhibiting a blue phase,’’ Mol. Cryst. Liq. Cryst. 516, 99–106 (2010).
31. D. K. Yang and P. P. Crooker, “Chiral-racemic phase diagrams of blue-phase liquid crystals.,” Phys. Rev. A 35(10), 4419 (1987).
32. T. Kato, Liquid crystalline functional assemblies and their supramolecular structures. (Springer Science & Business Media, 2008), pp. 99–117.
33. H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE 7232, Emerging liquid crystal technologies IV 7232, 723205 (2009).
34. S. Meiboom, J. P. Sethna, P. Anderson, and W. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46, 1216 (1981).
35. P. P. Crooker, “Plenary Lecture. The blue phases. A review of experiments,” Liq. Cryst. 5(3), 751–775 (1989).
36. R. D. VE. Meade , S. G. Johnson, and J. N. Winn, Photonic crystals: Molding the flow of light.-Second Edition (Princeton: Princeton University Press, 2008), pp.239−241
37. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid‐state lasers,” Adv. Mater. 12, 1655–1668 (2000).
38. J.-D. Lin, T.-Y. Wang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase,” Sci. Rep. 6, 30407 (2016).
39. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
40. H.-S., Kitzerow, “The Effect of Electric Fields on Blue Phases”, Mol. Cryst. Liq. Cryst. 202, 51−83 (1991).
41. P. J. Chen, M. Chen, S. Y. Ni, H. S. Chen, and Y. H. Lin, “Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals,” Opt. Express 6, 1003−1010 (2016).
42. J. D. Roberts, R. Stewart, and M. C. Caserio, Organic chemistry: methane to macromolecules (N.Y.: W.A. Benjamin, Inc., 2003), Chap. 14.
43. M. Bansal, “DNA structure: Revisiting the Watson-Crick double helix,” Curr. Sci. 85(11), 1556–1563 (2003).
44. W. A. Bonner, “The origin and amplification of biomolecular chirality,” Origins of Life and Evolution of the Biosphere 21(2), 59111 (1991).
45. T. Eriksson, S. Björkman, and P. Höglund, “Clinical pharmacology of thalidomide,” Eur. J. Clin. Pharmacol 57, 365–376 (2001).
46. M. Karras, “Synthesis of enantiomerically pure helical aromatics such as NHC ligands and their use in asymmetric catalysis,” Doctoral dissertation, Universität Potsdam, (2018).
47. M. Baroncini, G. Ragazzon, S. Silvi, M. Venturia, and A. Credi, “Azobenzene photoisomerization: an old reaction for activating new molecular devices and materials,” Photochem. 44, 296–323 (2017).
48. H. M. Dhammika Bandara, and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
49. J. P. Sauvage, J. F. Stoddart, B. L. Feringa, “The Nobel Prize in Chemistry 2016,” RSAS press release (2016).
50. R. D. Astumian, “How molecular motors work – insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016,” Chem. Sci. 8, 840–845 (2017).
51. B. L. Feringa, and W. R. Browne, “Macromolecules flex their muscles,” Nat. Nanotechnol. 3, 383–384 (2008).
52. 王志峮,「以摻混分子馬達之膽固醇液晶智能材料製備可手性反轉及超寬頻調控之布拉格-貝瑞光渦流產生器」,國立成功大學光電研究所碩士論文(2021)。
53. B. L. Feringa, and W. R. Browne, “Chemically optimizing operational efficiency of molecular rotary motors,” JACS 136(27), 9692–9700 (2014).
54. R. Eelkema, and B. L. Feringa, “Reversible full-range color control of a cholesteric liquid-crystalline film by using a molecular motor,” Chem Asian J. 1(3), 367–369 (2006).
55. 莊崴程,「利用可高度操控分子馬達摻混於螺旋超結構發展可全波長調控與圓偏振反轉之新穎光子元件」,國立成功大學光電研究所碩士論文(2020)。
56. J. Vicario, M. Walko, A. Meetsma, and B. L. Feringa, “Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors,” J. Am. Chem. Soc. 128, 5127–5135 (2006).
57. T. T. Tang, H. Y. Wu, C. J. Lin, and R. P. Pan, “A simple method of determining the pitch of a chiral nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 478(1), 143–899 (2007).
58. 吳承鴻,「可光調控之偶氮雙鍵手性材料摻雜藍相液晶光子晶體」,國立成功大學光電研究所碩士論文(2018)。
59. E. Demikhovt, and H. Stegemeyer, “Observation of a new metastable liquid-crystalline phase in supercooled blue phase systems,” Liq. Cryst. 10(6), 869–873 (1991).
60. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color‐matching functions were derived from Wright‐Guild data,” Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 22(1), 11-23 (1997).
61. Y. Ohno, “CIE fundamentals for color measurements,” NIP & Digital Fabrication Conference 16, 540-545 (2000).
62. L. Zhang, X. L. Li, D. Luo, P. Xiao, W. Xiao, Y. Song, Q. Ang, and B. Liu, “Strategies to achieve high-performance white organic light-emitting diodes,” Materials, 10(12), 1378 (2007).
63. T. B. Guo, “Convert spectrum to color,” https://ww2.mathworks.cn/matlabcentral/fileexchange/98289-convert-spectrum-to-color?s_tid=srchtitle.
校內:2027-06-30公開