簡易檢索 / 詳目顯示

研究生: 李志穎
Lee, Chi Wing
論文名稱: 氮化鎵半導體p-n接面應用在光電化學水分解之研究
The study of photoelectrochemical water splitting using GaN p-n junction as the photoanode
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 氮化鎵人工光合作用p-n接面氧化鎳光電化學水分解
外文關鍵詞: GaN, Artificial photosynthesis, pn junction, NiO, Photoelectrochemical water splitting
相關次數: 點閱:124下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將pn接面應用於GaN光陽極,n-GaN和pn-GaN光陽極在二電極系統下(外加偏壓1V)的起始電流分別為Jn = 0.17 mA/cm2及 Jpn = 0.22 mA/cm2。我們利用EIS電化學阻抗譜法和Mott-Schottky plot證實了pn接面的存在。由於pn接面具有內建電場可有效分離光生載子,pn接面延長了GaN光陽極本身與電解液的空間電荷層,增加載子分離的機會而使GaN光陽極的電流密度獲得提升。
    不過,GaN光陽極在進行PEC水分解時腐蝕現象嚴重,導致p-GaN被侵蝕,最終失去pn接面的功能。經過一小時穩定性測試後,電流密度分別下降為Jn = 0.091 mA/cm2及Jpn = 0.105 mA/cm2。
    為了解決GaN光陽極的腐蝕問題,我們利用電子束蒸鍍方法將金屬鎳Ni鍍在GaN表面,再透過爐管加熱方法將Ni轉化為氧化鎳NiO。表面具有氧化鎳的GaN光陽極,其穩定性得到有效提升。經過一小時測試後,pn-GaN/NiO的光電流只下降了17%,從初始的Jpn-GaN/NiO = 0.225 mA/cm2下降至Jpn-GaN/NiO = 0.187 mA/cm2; 而n-GaN/NiO則從Jn-GaN/NiO = 0.174 mA/cm2下降到Jn-GaN/NiO = 0.126 mA/cm2。
    從SEM圖像來看,無論是俯視圖或是截面圖,鍍上NiO的GaN光陽極表面沒有被侵蝕的現象。說明NiO能夠有效保護GaN光陽極,抵抗光腐蝕問題。另外,EIS電化學阻抗譜法和MS plot亦證實了pn-GaN/NiO光陽極的pn接面,經歷穩定性測試後仍然存在。
    除此之外,我們發現pn-GaN/NiO的onset potential比pn-GaN往負電位偏移了約-0.2 VRHE,證明NiO除具有抗腐蝕功能,亦有催化水氧化反應的作用。

    The pn junction was adopted on the GaN photoanode, the extension of the depletion region is beneficial to the charge separation. However, the GaN photoanodes are easily corroded and hence the pn junction will disappear. We deposited a NiO thin film on the GaN photoanodes as the anti-corrosion layer. The NiO film is highly transparent and has a sufficiently low charge transfer resistance. The pn-GaN/NiO photoanode has an excellent stability, and it can drive the water splitting reaction under the AM1.5 G illumination without any external bias. This is attributed to the catalytic effect of the NiO film and the modified flat band potential of the pn-GaN photoanode.

    Contents Abstract I 摘要 (Abstract in Chinese) II 致謝 (Acknowledgement) III Contents IV Table captions VI Figure Captions VII Chapter 1 1 Introduction 1 1.1 The concept of photoelectrochemical water splitting 2 1.2 Motivation of using Gallium Nitride as photoelectrode 3 Chapter 2 6 Fundamental of Semiconductor 6 2.1 Formation of Energy bands and energy bands splitting 6 2.2 Doping of semiconductor 7 2.3 The pn junction 9 Chapter 3 11 Semiconductor Photoelectrochemistry 11 3.1 Semiconductor/Electrolyte junction and band bending 11 3.2 Flat band potential and Mott-Schottky equation 12 3.3 Illumination of PEC cells 14 Chapter 4 15 Apply a pn junction on GaN photoanode for photoelectrochemical water splitting 15 4.1 Introduction 15 4.2 Experimental Methods 15 4.2.1 Three-electrode PEC cell setup 15 4.2.2 Preparation of pn-GaN epitaxial wafers 17 4.2.3 Preparation of n-GaN and pn-GaN photoanode 17 4.3 Result and Discussion 19 4.3.1 The light properties and the surface roughness of GaN photoanodes 19 4.3.2 Mott-Schottky Plot without illumination 22 4.3.3 Open-circuit potential (OCP) under illumination 26 4.3.4 Linear sweep voltammetry (LSV) 27 4.3.5 Electrochemical Impedance Spectroscopy (EIS) under illumination 29 4.3.6 Morphology analysis and Stability test of the photoanodes 31 Chapter 5 40 Apply a NiO film as the anti-photocorrosion layer of GaN photoanode 40 5.1 Introduction 40 5.2 Preparation of the GaN/NiO photoanodes 40 5.3 Results and Discussion 42 5.3.1 The light properties and the surface roughness of GaN/NiO photoanodes 42 5.3.2 Mott-Schottky Plot without illumination 45 5.3.3 Open-circuit potential (OCP) under illumination 48 5.3.4 Linear sweep voltammetry (LSV) 50 5.3.5 Electrochemical Impedance Spectroscopy (EIS) under illumination 51 5.3.6 Morphology analysis and Stability test of the photoanodes 53 Chapter 6 61 Conclusion and Future Works 61 6.1 Conclusion 61 6.2 Future works 61 References 62

    [1] G. Centi and S. Perathoner, "CO2‐based energy vectors for the storage of solar energy," Greenhouse Gases: Science and Technology, vol. 1, no. 1, pp. 21-35, 2011.
    [2] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," (in English), Nature, vol. 238, no. 5358, pp. 37-+, 1972.
    [3] M. Halmann, "Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells," Nature, vol. 275, no. 5676, p. 115, 1978.
    [4] Z. Chen et al., Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013.
    [5] S. Nakamura, "Gan Growth Using Gan Buffer Layer," (in English), Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 30, no. 10a, pp. L1705-L1707, Oct 1 1991.
    [6] J.-K. Sheu, P.-H. Liao, H.-Y. Cheng, and M.-L. Lee, "Photoelectrochemical hydrogen generation from water using undoped GaN with selective-area Si-implanted stripes as a photoelectrode," Journal of Materials Chemistry A, vol. 5, no. 43, pp. 22625-22630, 2017.
    [7] S.-Y. Liu et al., "Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation," Optics Express, vol. 20, no. S2, pp. A190-A196, 2012/03/12 2012.
    [8] J. Sheu, P. Liao, T. Huang, K. Chiang, W. Lai, and M. Lee, "InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid," Solar Energy Materials and Solar Cells, vol. 166, pp. 86-90, 2017.
    [9] M. Kibria and Z. Mi, Artificial Photosynthesis Using Metal/Nonmetal-Nitride Semiconductors: Current Status, Prospects, and Challenges. 2015.
    [10] E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.
    [11] D. A. Neamen, "Semiconductor physics and devices: basic principles," New York, NY: McGraw-Hill, 2012.
    [12] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications. wiley New York.
    [13] M.-L. Lee, P.-H. Liao, G.-L. Li, H.-W. Chang, C.-W. Lee, and J.-K. Sheu, "Enhanced production rates of hydrogen generation and carbon dioxide reduction using aluminum gallium nitride/gallium nitride heteroepitaxial films as photoelectrodes in seawater," Solar Energy Materials and Solar Cells, vol. 202, p. 110153, 2019/11/01/ 2019.
    [14] X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, and J. Gong, "Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co3O4/BiVO4 Photoanodes," Journal of the American Chemical Society, vol. 137, no. 26, pp. 8356-8359, 2015/07/08 2015.
    [15] K.-H. Ye et al., "BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics," Nano Energy, vol. 18, pp. 222-231, 2015/11/01/ 2015.
    [16] K. Fujii, M. Ono, Y. Iwaki, K. Sato, K. Ohkawa, and T. Yao, "Photoelectrochemical Properties of the p−n Junction in and near the Surface Depletion Region of n-Type GaN," The Journal of Physical Chemistry C, vol. 114, no. 51, pp. 22727-22735, 2010/12/30 2010.
    [17] A. A. Burk et al., "SiC and GaN wide bandgap semiconductor materials and devices," (in English), Solid-State Electronics, vol. 43, no. 8, pp. 1459-1464, Aug 1999.
    [18] E. Hecht, "Optics," Addison Wesley, 2002, p. 121.
    [19] T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, "Optical properties of hexagonal GaN," (in English), Journal of Applied Physics, vol. 82, no. 7, pp. 3528-3535, Oct 1 1997.
    [20] P. Carlsson, K. Uosaki, B. Holmström, and H. Kita, "Photoelectrochemical Properties of a GaP Electrode with an n/p Junction," Journal of The Electrochemical Society, vol. 136, no. 2, pp. 524-528, February 1, 1989 1989.
    [21] S. Chen and L.-W. Wang, "Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution," Chemistry of Materials, vol. 24, no. 18, pp. 3659-3666, 2012/09/25 2012.
    [22] T. Hayashi, M. Deura, and K. Ohkawa, "High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water," Japanese Journal of Applied Physics, vol. 51, p. 112601, 2012/10/09 2012.
    [23] K. Koike et al., "Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes," International Journal of Hydrogen Energy, vol. 42, no. 15, pp. 9493-9499, 2017/04/13/ 2017.
    [24] Y.-H. Yeh, T.-Y. Yu, M.-C. Liu, and Y.-J. Cheng, "Enhanced water splitting performance of GaN photoanode using self-assembled nickel/nickel-oxide nanoparticle catalyst," International Journal of Hydrogen Energy, vol. 42, no. 44, pp. 27066-27072, 2017/11/02/ 2017.

    下載圖示 校內:2022-11-01公開
    校外:2022-11-01公開
    QR CODE