簡易檢索 / 詳目顯示

研究生: 陳建安
Chen, Chien-An
論文名稱: 應用基因演算法改進零工式生產排程之研究-以半導體封裝模具廠為例
Applying Genetic Algorithm for Job-Shop Scheduling Problems in Semiconductor Packaging Mold Manufacturing
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: 零工式排程生產基因演算法總完工時間廠內部門總閒置時間
外文關鍵詞: Job-shop scheduling problem, Genetic Algorithm, Total completion time, factory idle time
相關次數: 點閱:124下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,工業生產模式的改變,製造產業的模式及環境也有重大的改變。相較於過去,以往的規模式大量製造生產,再透過配銷、零售等通路將產品配銷到消費者手上。這種大量生產模式的缺點在於,客戶對於商品的選擇權利有限。隨著市場需求的多元及多樣,傳統的生產模式無法立即打造專屬的生產線,以提供符合客戶心中理想的產品,同時客戶所需求的數量也未必足以提供大量生產所投資的利潤,因此有適合多樣少量的客製化零工式排程生產模式,將成為滿足人類多元需求的生產模式。在這種模式中,每張訂單在生產製造的流程上不盡相同且彼此獨立,為了完成這樣多元化的訂單需求,如何調度及安排生產製造的流程變成相當重要的課題,良好的排程不但可以在最短的時間內完成所有任務,更可以減少資源的花費、提高企業的獲利。
    本研究以同時降低總完工時間及廠內部門總閒置時間為績效排程目標,利用基因演算法在有限時間內找出零工式生產的多目標排程解,並分析在不同規模大小的訂單數量下進行排程,與傳統的派工方法進行比較 以達成高稼動率且高效率生產這兩大目標。
    透過研究分析結果顯示,本研究之基因演算排程方法不論排程訂單規模之大小,仍然可以在較短的時間內得到優於傳統派工方法的排程解,且在運算時間上較傳統排程方法有大幅度改善。雖然透過此法得到的排程僅是近似最佳解,但是其排程品質卻可以有效的幫助於決策者在排程策略上提供決策依據。

    In the past mass production model, products are produced in a large quantity, through distributions, retails, ect., to delivery products into customer. Because of the diversity of market demand, the traditional mass production mode can’t create a dedicated production line to provide customers ideal products immediately. Therefore, the production model of job-shop with small amount will be the best choice to fulfilled the customer demand. In this situation, each order in the manufacturing process is not the same but independent of each other. In order to complete needs of diverse orders, how to arrange manufacturing process becomes a very important issue. Good schedule not only can complete all the tasks in the shortest time, but also can reduce the cost of resources and increase the profitability for enterprises.
    This study focus on two goals. First, reduce the total completion time and factory idle time by using the genetic algorithm to find out schedules for job-shop scheduling within limited time. Second, at the same time, comparing with the traditional dispatching rule to analysis the scales of order quantity to achieve the high rate of movement and production efficiency.
    Through the result of research and analysis, it showed that regardless of the scales of order quantity in the schedule, genetic algorithm can still has the better outcome of schedule arrangement within a short time which comp.

    中文摘要 II 英文摘要 III 致謝 VII 第一章 緒論 1 1.1 研究背景 2 1.2 研究動機 2 1.3 研究目的 3 1.4 研究流程架構 5 第二章 文獻探討 7 2.1 排程問題 7 2.2零工式排程生產 7 2.3績效排程目標 8 .3.1總完工時間 8 2.3.2廠內部門總閒置時間 8 2.4基因演算法 8 2.4.1 基因演算法之控制因子 9 2.4.2基因演算法操作流程 10 2.5基因演算法求解生產排程問題之相關文獻 12 2.6 小結 14 第三章 研究方法 15 3.1問題定義與研究方法流程 15 3.2研究假設與限制 16 3.3遺傳演算法的架構 16 3.3.1參數設定 18 3.3.2編碼方式 18 3.3.3 初始群組的可行解排列 19 3.3.4適應函數及衡量指標 21 3.3.5選擇 25 3.3.6交配 25 3.3.7突變 26 3.3.8保留 27 3.3.9停止規則 28 3.4傳統派工法則 28 3.6 結果評估 32 第四章 實驗與分析 33 4.1運算環境與規模資料取樣 33 4.2 實驗排程方法 38 4.2.1傳統派工法則排程 38 4.2.2基因演算法參數設定 39 4.3訂單規模變化之分析結果 40 4.4績效評估 44 第五章 研究結論與建議 45 5.1研究結論 45 5.2未來建議方向 47 參考文獻 49 中文文獻 49 英文文獻 49 附錄 52 附件-基因演算法參數實驗細目 52

    中文文獻
    王培珍(1996),「應用遺傳演算法與模擬在動態排程問題之探討」,中原大學工業工程研究所碩士論文。

    英文文獻
    Akpinar, S. Bayhan, G. M., & Baykasoglu, A. (2013). Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Applied Soft Computing, 13(1), 574-589.

    Baker, K. R. (1984). Sequencing rules and due-date assignments in a job shop.Management Science, 30(9), 1093-1104.

    Brown, J. R. & Ozgur, C. O. (1997). Priority class scheduling: production scheduling for multi-objective environments. Production Planning & Control,8(8), 762-770.

    Chang, P. C. Hsieh, J. C., & Lin, S. G. (2002). The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem. International Journal of Production Economics, 79(3), 171-183.

    Deb, K. Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

    Gao, J. Gen, M., Sun, L., & Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 53(1), 149-162.

    Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press.

    Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), 392-403.

    Ivens, P., & Lambrecht, M. (1996). Extending the shifting bottleneck procedure to real-life applications. European Journal of Operational Research, 90(2), 252-268.

    Lee, K. M., Yamakawa, T., & Lee, K. M. (1998, April). A genetic algorithm for general machine scheduling problems. In Knowledge-Based Intelligent Electronic Systems, 1998. Proceedings KES'98. 1998 Second International Conference on (Vol. 2, pp. 60-66). IEEE.

    Man, K. F., et. al. (1999), Genetic Algorithms, Springer-Verlag, London.

    Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research, 35(10), 3202-3212.

    Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34(5), 461-476.

    Schaffer, J. D. (1985, July). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st International Conference on Genetic Algorithms (pp. 93-100). L. Erlbaum Associates Inc.

    Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221-248.

    Sun, L., Lin, L., Wang, Y., Gen, M., & Kawakami, H. (2015). A Bayesian Optimization-based Evolutionary Algorithm for Flexible Job Shop Scheduling.Procedia Computer Science, 61, 521-526.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE