| 研究生: |
李雅君 Li, Ya-Chun |
|---|---|
| 論文名稱: |
道路生態工程之碳足跡分析 Carbon footprint analysis for ecological engineering of roadways |
| 指導教授: |
張行道
Chang, Andrew S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 生態工程 、生命週期評估 、碳足跡 、道路 、施工機具 |
| 外文關鍵詞: | Ecological engineering, life cycle assessment, carbon footprint, roadway, construction equipment |
| 相關次數: | 點閱:140 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
道路生態工程碳排量較少被量化研究,為了解其環境衝擊量,需要計算其生命週期階段之碳足跡。本研究以台灣某道路案例,分析於生命週期材料生產、施工及維護三階段的碳排量。
本研究蒐集案例工程價目表中生態工程工項材料、施工及機關業主維護階段數量、成本資料,及機具單位成本、生產力數字,估算機具單位油耗,查詢碳排係數,以計算生命週期三階段造成的碳排放量,並計算維護年限與碳足跡之關係及分析生態效率。
研究結果顯示,綜合排水、生態及植生三類工作,施工及維護階段成本分別有61%及40%納入本研究分析,而三類工作納入分析為51%、86%及46%,且材料生產成本佔三類工作金額之54%。
關於碳排放,材料生產以排水工作佔93 %最高,生態工作次之,植生工作佔3 %最低;施工碳排以生態工作佔57 %最高,排水工作次之,植生工作佔3 %;維護碳排以生態工作佔51%最高,植生工作次之,排水工作佔15 %最低。故需降低材料生產碳排最需由排水工作材料減量,施工及維護碳排需由生態工作減量。
案例道路生態工程排碳量,材料生產佔65%為最大,施工階段29%次之 (材料運輸14%、機具施作15%),維護階段6%最小 (運輸0%、機具6%)。本案例生態工程施工產生之碳量佔94%,維護階段產生碳量為6%。
本案例工程約第4年時,碳排等於固碳量,初期碳排主要為材料生產及施工階段,若能將其碳排減低,則可提早達成碳排平衡。
There is less quantitative research on carbon emission of ecological engineering of roadways. To comprehend ecological engineering’s impact on the environment, it needs to calculate the carbon footprint in its life cycle. This study adopted a case of a roadway in Taiwan to analyze the carbon emissions of its three life cycle stages, including material production, construction, and maintenance.
This research collected the case project’s quantities of ecological engineering’s items including materials and consutrction equipment, the owner’s maintenance cost information, equipment productivity figures, and estimated unit fuel consumption of equipment. It also searched their carbon emission coefficients to calculating carbon emissions for three stages of life cycle.
For the drainage, ecology and vegetation work, the cost of construction and maintenance analyzed in this study is 61% and 40%, respectively. The three categories of work included in the analysis are 51%, 86% and 46%, respectively. Material production is 54% of the cost amount.
Regarding carbon emission, drainage is the highest (93%) in material production, ecology 2nd, and vegataion the lowest (3%). Regarding carbon emission in maintenance, ecology is the highest (51%), vegetation 2nd, and drainage the lowest (15%). Hence, lowering drainage material quantity is most crucial for carbon emission in material production, and lowering ecology work is most crucial for carbon emission in construction and matainenance.
In carbon emission in ecological engineering for roadways, material production is the largest (65%), construction phase 2nd (29%) (material transportation 14%; equipment 15%), maintenance phase the smallest (6%) (transportation 0%; equipment 6%). Carbon emission from ecological engineering construction is 94%, and maintenance phase is 6%.
For the case project in approximately the 4th year, its carbon emission volume would equal the carbon sequestration volume. Its initial carbon emission comes from mainly the material production and construction. If the carbon emission volume can be lowered , carbon balance can be achieved earlier.
英文文獻
1. Bilec, M., Ries, R., Matthews, H. S. and Sharrard, A. L. (2006). “Example of a hybrid life-cycle assessment of construction processes.” Journal Infrastructure System, Vol.12, No. 4, pp. 207-215.
2. Cellura, M., Longo, S. and Mistretta, M. (2011). “Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile.” Journal of Renewable and Sustainable Energy Reviews, Vol. 15, pp. 4697-4705.
3. Cass D. and Mukherjee A. (2011). “Calculation of Greenhouse Gas Emissions for Highway Construction Operations by Using a Hybrid Life-Cycle Assessment Approach:Case Study for Pavement Operations” Journal of Construction Engineering and Management, 137(11), pp. 1015-1025.
4. Consoli, F. (1993), Guidelines for life-cycle assessment: A “code of practice.” Pensacola, USA.
5. George, J. (2013). Identifying the Relationships between BMP Functions and Costs. Master Thesis, Civil Engineering and Management, National Cheng-Kung University.
6. Hur, T., Kim, I. and Yamamoto, R. (2004). “Measurement of green productivity and its improvement.” Journal of Cleaner Production, Vol. 12, pp. 673-683.
7. Han, S., Mok, K. and Choi, S. (2014). “The implementation of clean development mechanism (CDM) in the construction and built environment industry.” Journal of Energy Policy, Vol. 65, pp. 512-523.
8. ICE2.0 (Inventory of Carbon & Energy) (2011). http://web.mit.edu/2.813/www/readings/ICEv2.pdf.old,accessed on 2th June, 2015.
9. IPCC (Intergovermenmental Penel on Climate Change.) (2007). “The Physical Science Basis-Summary for Policy Makers.” http://www.ipcc.ch/SPM2feb07.pdf, accessed on 15th June, 2014.
10. ISO 14040 (2006). Environmental management. Life cycle assessment- Principles and framework.
11. Jasch, C. (2000). “Environmental performance evaluation and indicators.” Journal of Cleaner Production, Vol. 8, pp. 79-88.
12. Muench, S. T., Anderson, J. L., Hetfield, J. P., Koester, J. R. and Soderlund, M. (2011). Greenroads Manual, v1.5. Seattle, WA: University of Washington.
13. Muench, S.T., Anderson, J.L., Bevan, T.A. (2010). “Greenroads: A Sustainability Rating System for Roadways.” Journal of Pavement Research and Technology, 3(5), 270-279.
14. Martin, C., Ruperd, Y., and Legret, M. (2007). “Urban Stormwater Drainage Management: The Development of a Multicriteria Decision Aid Approach for Best Management Practices.” European Journal of Operational Research,” 181, 338–349.
15. Mohapatra, P. K., Siebel, M. A., Gijzen, H. J., van der Hoek, J. P. and Groot, C.A. (2002). “Impoving eco-efficiency of Amsterdam water supply: A LCA approach.” Journal of Water Supply, Vol. 54, No. 4, pp. 217-227.
16. PAS 2050 (2008). Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, BSI , UK.
17. Pennsylvania Department of Environmental Protection (DEP) (2006). “Pennsylvania Stormwater Best Management Practices Manual”. Bureau of Watershed Management , Pennsylvania.
18. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P. and Pennington, D. W. (2004). “Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications” Journal of Environment International, Vol. 30, pp.701-720.
19. Truc, H. (2012). Eco-Efficiency Analysis for Roadway projects. Master Thesis, Civil Engineering and Management, National Cheng Kung University.
20. The U.S. Environmental Protection Agency (USEPA) (2004). The Use of Best Management Practices (BMPs) in Urban Watersheds, Office of Research and Development, Washington, DC.
21. United Nations economic and social commission for Asia and the Pacific (UNESCAP) (2009). Eco-efficiency indicators: measuring resource-use efficiency and the impact of economic activities on the environment.
22. Trisha and William(2013) “Predicting the carbon footprint of urban stormwater infrastructure ” Journal of Ecological Engineering, Vol. 58, pp. 44-51.
23. VicRoads (2008). Victoria’s first carbon neutral roadconstruction project, State Government of Victoria, Australia.
24. Verfaillie, H. A. and Bidwell, R. (2000). Measuring eco-efficiency: a guide to reporting company performance. World Business Council for Sustainable Development.
25. Wiedmann, T. and Minx, J. (2007). A definition of carbon footprint. Nova Science Publishers, Hauppauge , NY, USA.
26. Stripple, H. (2001). Life cycle assessment of road. A pilot study for inventory analysis. IVL Swedish environmental research institute.
27. Steele, J. (1997). Sustainable Architecture, McGraw-Hill, N.Y.
中文文獻
1. 王彥智(2010),營建節能減碳數字的資料品質評估,國立成功大學土木管理研究所碩士論文。
2. 工程會白皮書(2008),永續公共工程–節能減碳政策白皮書,行政院公共工程委員會。
3. 內政部建築研究所(2015),綠建築評估手冊-基本型。
4. 行政院公共工程委員會, http://eem.pcc.gov.tw/node/124,accessed on 2015/05/19.
5. 行政院環保署(2010a),產品與服務碳足跡計算指引。
6. 行政院環保署(2010b),溫室氣體查驗指引。
7. 行政院環保署, http://www.epa.gov.tw/,accessed on 2015/0619.
8. 運研所(2013),交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部運輸研究所。
9. 運研所(2012),交通運輸工程碳排放量推估模式建立與效益分析之研究,交通部運輸研究所。
10. 朱士傑(2014),材料生產與施工階段環境衝擊分析-以兩橋梁為例,國立成功大學土木工程研究所碩士論文。
11. 沈得縣(2001),「綠營建工程方案-道路工程建立綠營建工程設計規範及設計準則之研究」,行政院公共工程委員會委託研究報。
12. 吳木富等(2009),「高雄科學園區交流道生態池工程實務」,生態工程研討會,12月25日,台灣大學
13 邱銘源(2002),國道建設應用生態工法準則之研究,碩士論文,國立台灣大學。
14 佘品蓁(2012),道路設計因子對行車碳排放影響之研究,國立中央大學營建管理研究所碩士論文。
15 林思翰(2013),綠道路認證中施工活動項目執行之困難評估與原因分析,國立成功大學土木管理研究所碩士論文。
16 施勵行及劉勝傑(2003),「永續性產品的評估-以顯示器產品為例」,工業污染防治,第85卷,142-163頁。
17 陳昭秀(2013),橋梁工程碳排放量案例分析之研究,國立中央大學營建管理研究所碩士論文。
18 陳啟明等(2013),應用公共工程經費電腦估價系統(PCCES)架構估算工程二氧化碳排放量委託研究案成果報告,行政院公共工程委員會委託研究計畫。
19 陳振川(2008),解構、重建,永續公共工程展新頁。
20柳中明(1997),「能源與二氧化碳排放減量」,全球變遷通訊,第十六期。
21 張登勝(2013),暴雨管理與排水系統之整合分析,國立成功大學土木工程研究所碩士論文。
22 張行道、蔡雅雯、李梓暘、徐士哲(2010),工程顧問公司永續設計環境面項目與指標之建立,台灣世曦工程顧問股份有限公司研究報告,計畫編號99940。
23 張嘉玲(2008),「低衝擊開發之應用發展趨勢」,土木水利會刊,第35卷,第4期,台北市。
24 張又升(2002),建築物生命週期二氧化碳減量評估,國立成功大學建築研究所博士論文。
25 黃榮堯、葉政黌、許維庭(2006),道路建設綠營建評估指標系統之研究,技術學刊,第二十一卷,第一期,19-30 頁。
26 楊英賢(2008),生命週期評估與不確定分析應用於火力電廠與燃料選擇,國立成功大環境工程博士論文。
27 褚筱文(2010),應用BMPDSS模擬都市暴雨之最佳化管理,國立台北科技大學土木與防災研究所碩士論文。
28 蔡雅雯(2012),工程永續設計環境面項目之建立與適用性,國立成功大學博士論文。
29 謝潮儀(2004),林孟立,「道路工程生態工法推動策略之芻議」,2004 年國際生態工法研討會。
30鐘敦沛等(2012),研訂公共工程計畫相關審議基準及綠色減碳指標計算規則,行政院公共工程委員會專案研究計畫。