簡易檢索 / 詳目顯示

研究生: 李姿穎
Li, Tzu-Ying
論文名稱: 間接網路外部性產品之多代擴散模型研究
A Study of Multi-generation Diffusion Model with Indirect Network Externality
指導教授: 耿伯文
Kreng, Victor B.
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 68
中文關鍵詞: 多代擴散模型間接網路外部性產品生命週期關鍵多數點
外文關鍵詞: Multi-generation Diffusion Model, Indirect Network Externality, Product life cycle, Critical mass
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究希望就兩大部分來討論智慧型手機創新的經營模式。第一,以多代產品來應對極短的產品生命週期。現今之創新科技產品具有極高之技術替換率,單代擴散模型已無法符合目前預測需求,因此本研究使用多代創新擴散模型來適配科技產品。第二,善用間接網路外部性來刺激銷售。間接網路外部性又被稱為「交叉產品的網路外部性」(Cross-Product Network Externalities)他利用正向的互補能量創造更大的網絡效應。例如Apple Inc.利用龐大的應用軟體數量來帶動手機銷售量,因此本研究選用Apple Inc.2007年至2011年推出至各代iPhone產品為實證研究對象。
    研究結果分為兩部分。第一,創新科技多代產品不適用於多代擴散模型。創新多代產品屬於極端消費性電子商品,他具有極高之技術替換率,導致產品生命週期非常短,使得第二代產品無法在前代產品尚未飽和時即導入市場,因此破壞了Fisher & Pry (1971)多代擴散的基本假設,在匯整其他相關研究後,本研究認為創新科技多代產品並不適用於多代擴散模型。
    第二,加入應用軟體數量討論間接網路外部性可有效提升模型解釋及預測能力。本研究將互補品數量架構至動態市場潛量中,而透過修正模型的參數估計值可以了解不同銷售時期下影響產品擴散速度的因素。另一方面,本研究也發現越後代產品達到關鍵多數點以及高鋒點的時間區間會越短,表示企業須持續改善,以求在更短的時間下推出更新更符合顧客需求的產品,而行銷及研發人員則需在不同時間點做出不同決策,期望用不同商業模式增加商品銷售量提升公司利潤。

    The purposes of study discuss two parts to innovative business model of the smart phone. First, using multi-generation to face the short product life cycle. The innovative technology products have a characteristic of high technical replacement rate, the single diffusion model can not fit. Second, using indirect network externality to increase sales, which is known as ”cross-network externalities". The positive complementary energy will create a larger network effect toward product sales. This study chooses iPhone which is introduced by Apple Inc. for the empirical study collected sales data from 2007 to 2011.
    The results of this research could be discussed from two dimensions. First, Innovation technology can not be applied to multi-generation diffusion model. The products are extreme consumer electronic goods with a very high technical replacement rate, which results in a very short product life cycle. While the second-generation products into the market , the previous generation products are not yet saturated .
    Second, adding the number of applications to the dynamical market potential to discuss the indirect network externalities, which shows better performances in forecasting long-term sales. On the other hand, the study also found that the time interval of critical mass and peak time will be shortened continually. In conclusion, the enterprise is required to implement continuous improvement to respond to different needs of customers, and use different business models to enhance market sales and corporate profits.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻探討 5 第一節 擴散模型 5 第二節 多代擴散模型 12 第三節 網路外部性 21 第四節 間接網路外部性擴散模型 24 第五節 參數估計與模型估計準則 26 第三章 研究方法 31 第一節 研究架構 31 第二節 研究模式 33 第三節 參數估計及模型評估準則 39 第四章 實證結果與分析 41 第一節 iPhone和APP Store介紹 41 第二節 模型之參數估計與適配能力 44 第五章 結論與建議 61 第一節 研究結論 61 第二節 未來研究方向 64 參考文獻 65

    Bass, F. M. (1969). New Product Growth for Model Consumer Durables. Management Science Series a-Theory, 15(5), 215-227.
    Bass, P. I. B., F.M. (2004). IT waves : Two completed generational diffusion models.: Working paper,School of Management, The University of Texas at Dallas, Richardson, TX.
    Bucklin, L. P., & Sengupta, S. (1993). The Co-Diffusion of Complementary Innovations - Supermarket Scanners and Upc Symbols. Journal of Product Innovation Management, 10(2), 148-160.
    Chou, C. F., & Shy, O. (1990). Network Effects without Network Externalities. International Journal of Industrial Organization, 8(2), 259-270.
    Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370. doi: 10.1002/for.1058
    Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370. doi: Doi 10.1002/For.1058
    Danaher, P. J., Hardie, B. G. S., & Putsis, W. R. (2001). Marketing-mix variables and the diffusion of successive generations of a technological innovation. Journal of Marketing Research, 38(4), 501-514.
    Dodson, J. A., & Muller, E. (1978). Models of New Product Diffusion through Advertising and Word-of-Mouth. Management Science, 24(15), 1568-1578.
    Economides, N. (1989). Desirability of Compatibility in the Absence of Network Externalities. American Economic Review, 79(5), 1165-1181.
    Economides, N. (1996). The economics of networks. International Journal of Industrial Organization, 14(6), 673-699.
    Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3(0), 75-88. doi: 10.1016/s0040-1625(71)80005-7
    Giovanis, A. N., & Skiadas, C. H. (1999). A stochastic logistic innovation diffusion model studying the electricity consumption in Greece and the United States. Technological Forecasting and Social Change, 61(3), 235-246.
    Gupta, S., Jain, D. C., & Sawhney, M. S. (1999). Modeling the evolution of markets with indirect network externalities: An application to digital television. Marketing Science, 18(3), 396-416.
    Islam, T., & Meade, N. (1997). The diffusion of successive generations of a technology: A more general model. Technological Forecasting and Social Change, 56(1), 49-60.
    Jain, D., Mahajan, V., & Muller, E. (1991). Innovation Diffusion in the Presence of Supply Restrictions. Marketing Science, 10(1), 83-90.
    Jones, J. M. R., C. J. (1991). Incorporating distribution into new product diffusion models. International Journal of Research in marketing, 8, 91-112.
    Kalish, S. (1985). A New Product Adoption Model with Price, Advertising, and Uncertainty. Management Science, 31(12), 1569-1585.
    Katz, M. L., & Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. American Economic Review, 75(3), 424-440.
    Kauffman, R. J., & Wang, B. (2001). New buyers' arrival under dynamic pricing market microstructure: The case of group-buying discounts on the Internet.
    Journal of Management Information Systems, 18(2), 157-188.Kim, N., Chang, D. R., & Shocker, A. D. (2000). Modeling intercategory and generational dynamics for a growing information technology industry. Management Science, 46(4), 496-512.
    Kim, N., & Srivastava, R. K. (2007). Modeling cross-price effects on inter-category dynamics: The case of three computing platforms. Omega-International Journal of Management Science, 35(3), 290-301. doi: DOI 10.1016/j.omega.2005.06.004
    Kreng, V. B., & Wang, H. T. (2009). The interaction of the market competition between LCD TV and PDP TV. Computers & Industrial Engineering, 57(4), 1210-1217. doi: DOI 10.1016/j.cie.2009.05.008
    Liebowitz, S. J., & Margolis, S. E. (1995). Path Dependence, Lock-in, and History. Journal of Law Economics & Organization, 11(1), 205-226.
    Liikanen, J., Stoneman, P., & Toivanen, O. (2004). Intergenerational effects in the diffusion of new technology: the case of mobile phones. International Journal of Industrial Organization, 22(8-9), 1137-1154.
    doi: 10.1016/j.ijindorg.2004.05.006
    Lin, C. P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interactive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85-108. doi: Doi 10.2753/Jec1086-4415130103
    Maetin, C., & Witt, S. (1989). Forecasting tourism demand : a comparison of the accuracy of several quantitative methods. International Journal of Forecasting, 5(1), 7-19.
    Mahajan, V., & Muller, E. (1998). When is it worthwhile targeting the majority instead of the innovators in a new product launch? Journal of Marketing Research, 35(4), 488-495.
    Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion-Models in Marketing - a Review and Directions for Research. Journal of Marketing, 54(1), 1-26.
    Mahajan, V., Muller, E., & Srivastava, R. K. (1990). Determination of Adopter Categories by Using Innovation Diffusion-Models. Journal of Marketing Research, 27(1), 37-50.
    Mahajan, V., & Peterson, R. A. (1978). Innovation Diffusion in a Dynamic Potential Adopter Population. Management Science, 24(15), 1589-1597.
    Mahajan, V., Peterson, R. A., Jain, A. K., & Malhotra, N. (1979). New Product Growth-Model with a Dynamic Market Potential. Long Range Planning, 12(4), 51-58
    Norton, J. A., & Bass, F. M. (1987). A Diffusion-Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Management Science, 33(9), 1069-1086.
    Norton, J. A., & Bass, F. M. (1992). Evolution of Technological Generations - the Law of Capture. Sloan Management Review, 33(2), 66-77.
    Pae, J. H., & Lehmann, D. R. (2003). Multigeneration innovation diffusion: The impact of intergeneration time. Journal of the Academy of Marketing Science, 31(1), 36-45. doi: Doi 10.1177/0092070302238601
    Robinson, B., & Lakhani, C. (1975). Dynamic Price Models for New-Product Planning. Management Science Series B-Application, 21(10), 1113-1122.
    Rogers, E. M. (1962). Diffusion of Innovation (3rd ed.): New York : The Free Press.
    Rogers, E. M. (1983). Diffusion of Innovation: New York : The Free Press.
    Schmittlein, D. C., & Mahajan,V. (1982). Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance. Marketing Science, Vol. 1, No. 1, 57-78.
    Shapiro, C., & H.R.,Varian. (1999). Information Rule:A Strategic Guide to the Network Economy: Harvard Business School Press,Boston,MA.
    Sharif, M. N., & Ramanathan, K. (1981). Binomial Innovation Diffusion-Models with Dynamic Potential Adopter Population. Technological Forecasting and Social Change, 20(1), 63-87.
    Shurmer, M. (1993). An Investigation Into Sources Of Network Externalities In The Packaged Pc Software Market. . Information Economics And Policy, 5(3), 231-251. doi: 10.1016/0167-6245(93)90012-6
    Shy, O. (2001). The economics of network industries.
    Speece, M. W., & Maclachlan, D. L. (1995). Application of a Multigeneration Diffusion-Model to Milk Container Technology. Technological Forecasting and Social Change, 49(3), 281-295.
    Srinivasan, V., & Mason,C.H. . (1986). Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing Science, vol. 5 no. 2 169-178.
    Theil, H. (1965). The Analysis of Disturbances in Regression-Analysis. Journal of the American Statistical Association, 60(312), 1067-1079.

    下載圖示 校內:2017-06-26公開
    校外:2017-06-26公開
    QR CODE