簡易檢索 / 詳目顯示

研究生: 鄭竣陽
Cheng, Chun-Yang
論文名稱: 以低溫水熱法製備氧化鋅奈米柱應用於薄膜電晶體之研究
Thin film transistors using ZnO nanorods grown by low temperature hydrothermal method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 氧化鋅低溫水熱法薄膜電晶體光致螢光量測
外文關鍵詞: Zinc oxide, low temperature hydrothermal method, thin film transistor, photoluminescence
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以探討低溫水熱法製備氧化鋅奈米結構應用於薄膜電晶體為主軸,主要分為兩研究方向,生長規律性排列之氧化鋅奈米結構及不同熱處理溫度對於薄膜電晶體電特性影響。
    於生長規律排列氧化鋅奈米結構部分,本研究利用調配水熱法中溶液濃度及晶種層厚度條件,比較不同變因下奈米柱生長形態。最終利用溶液濃度 0.025 M 及晶種層 200 nm ,此條件具最佳氧化鋅奈米結構之生長均勻性及奈米柱準直性。本研究於源-汲極間加入擋層結構並搭配低溫水熱法製作氧化鋅奈米柱通道層,擋層結構部分可有效促使源極與汲極端所生長氧化鋅奈米結構具有單向性生長並可控制生長範圍,最終所製備薄膜電晶體具有規則排列之氧化鋅奈米結構。
    低溫水熱法成長氧化鋅奈米柱,其結構本身具有高密度氧缺陷存在,故初步合成之氧化鋅奈米柱直接應用於薄膜電晶體通道,其奈米結構部分將具高導電性,使得元件喪失電晶體功能。
    於本研究中,為了使氧化鋅奈米結構之缺陷密度有所降低,利用高濃度氮氣分別進行200oC、300oC 與400oC熱處理,並進行光致螢光量測,於300oC 熱處理之光致螢光量測中,與其餘條件相比下,具最高之紫外光與可見光發射比,應用於薄膜電晶體當中,因較低薄膜缺陷密度,於次臨界擺幅與轉移電導部分皆有所提升,其值分別為次臨界擺幅0.44 V / dec、轉移電導10.57 µS,另外開關電流比部分約為104,臨界電壓2.67 V,成功將規律生長之氧化鋅奈米結構應用於薄膜電晶體當中 。

    In this study, the retaining layer and optimized parameters are used to overcome the problem of non-directionality nanostructure growth by hydrothermal method. The zinc oxide nanostructure with regular arrangement are prepared and applied to the channel layer of thin films transistors. Using change the heat treatment temperatures to improve the problem of high defect density exist in zinc oxide generate by low temperature hydrothermal method. Finally, the zinc oxide nanostructure arranges regularly to fabricate thin film transistors. After annealing process, enhance performances of device with subthreshold swing of 0.44 mV/dec, transconductance 10.57µS ,and on/off current ratio of 104.

    摘要 I ABSTRACT III 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 序論 1 1.1 薄膜電晶體之發展概況 1 1.2 研究動機 2 1.3 論文架構 3 參考文獻 4 第二章 實驗原理 9 2.1 氧化鋅材料簡介 9 2.2 物理氣相沉積系統 9 2.2.1 物理氣相沉積方式 9 2.2.2 濺鍍原理 10 2.2.3 電子束蒸鍍系統 11 2.3 水熱法 12 2.4 薄膜電晶體之工作原理 13 2.5 薄膜電晶體之元件特性 15 2.5.1 臨界電壓 15 2.5.2 元件開關比 15 2.5.3 次臨界擺幅 16 2.5.4 場效載子遷移率 16 參考文獻 20 第三章 元件製程 23 3.1 元件光罩設計 23 3.2 元件結構製作 23 3.2.1 石英玻璃基板之清潔 23 3.2.2 定義閘極電極圖形 24 3.2.3 鍍製閘極電極金屬 24 3.2.4 定義絕緣層圖形 25 3.2.5 鍍製絕緣層材料 26 3.2.6 定義晶種層及源、汲極圖形 26 3.2.7 鍍製晶種層材料 27 3.2.8 鍍製源、汲極電極金屬 27 3.2.9 定義擋層圖形 28 3.2.10 鍍製擋層材料 29 3.3 氧化鋅奈米結構生長 29 3.4濕式蝕刻 30 3.5高溫爐退火 31 3.6 量測儀器 31 3.6.1 直流電流-電壓量測系統 31 3.6.2 光致螢光光譜儀 32 參考文獻 37 第四章 元件量測與分析 38 4.1 不同前驅物濃度對於奈米柱形態影響 38 4.2 不同晶種層厚度對於奈米柱形態影響 39 4.3結合檔層結構之奈米柱生長形態 40 4.4奈米柱光致螢光(PL)量測分析 41 4.4.1 以水熱法生長奈米柱光致螢光量測分析 41 4.4.2 不同退火溫度之奈米柱光致螢光量測分析影響 41 4.5 薄膜電晶體電性量測分析 42 參考文獻 55 第五章 結論 57   表目錄 表4.1 不同晶種層厚度對於氧化鋅奈米結構直徑之影響 45 表4.2 不同熱處理溫度對於薄膜電晶體特性之影響 45 圖目錄 圖2. 1 磁控式射頻濺鍍系統系統示意圖 18 圖2. 2 電子束蒸鍍系統示意圖 19 圖3. 1 製程光罩圖形分別為 (a) 閘極圖形、(b) 絕緣層圖形、(c) 晶 種層及源、汲極圖形、(d) 擋層圖形、(e) 濕式蝕刻窗口 33 圖3. 2 閘極結構示意圖 34 圖3. 3 絕緣層結構示意圖 34 圖3. 4 晶種層及源、汲極圖形示意圖 35 圖3. 5 擋層圖形示意圖 35 圖3. 6 水熱法製程裝置示意圖 36 圖4. 1 使用0.02 M溶液生長之氧化鋅奈米結構SEM圖 46 圖4. 2 使用0.025 M溶液生長之氧化鋅奈米結構SEM圖 46 圖4. 3 使用0.03 M溶液生長之氧化鋅奈米結構SEM圖 47 圖4. 4 使用400 nm晶種層生長之氧化鋅奈米結構SEM圖 47 圖4. 5 使用不同厚度晶種層 (a) 200 nm、(b) 400 nm 48 圖4. 6 搭配擋層結構使用 (a) 1500倍率、(b) 4000倍率 49 圖4. 7 氧化鋅奈米結構光致螢光量測特性圖 50 圖4. 8 不同退火溫度對於氧化鋅奈米結構光致螢光特性圖………50 圖4. 9 未經熱處理元件之不同VGS 對應IDS-VDS 輸出特性曲線圖 51 圖4. 10 未經熱處理元件之 IDS-VGS 轉移特性曲線圖 51 圖4. 11 200 oC熱處理元件之不同VGS對應IDS-VDS 輸出特性曲線圖 52 圖4. 12 200 oC熱處理元件之 IDS-VGS轉移特性曲線圖 52 圖4. 13 300 oC熱處理元件之不同VGS 對應IDS-VDS 輸出特性曲線圖 53 圖4. 14 300 oC熱處理元件之 IDS-VGS轉移特性曲線圖 53 圖4. 15 400 oC熱處理元件之不同VGS 對應IDS-VDS 輸出特性曲線圖 54 圖4. 16 400 oC熱處理元件之 IDS-VGS轉移特性曲線圖 54

    CH1參考文獻
    [1] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. Electron Devices, vol. 20, pp. 995-1001, 1973.
    [2] X. Xu, L. T. Zhang, Y. Shao, Z. Y. Chen, Y. Le, and S. D. Zhang, “Amorphous indium tin oxide thin-film transistors fabricated by cosputtering technique,” IEEE Trans. Electron Devices, vol. 63, pp. 1072-1077, 2016.
    [3] W. S. Cheong, Y. S. Yoon, J. H. Shin, C. S. Hwang, and H. Y. Chu, “Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor,” Thin Solid Films, vol. 517, pp. 4094-4099, 2009.
    [4] Y. Le, Y. Shao, X. Xiao, X. Xu, and S. D. Zhang, “Indium-tin-oxide thin-film transistors with In Situ anodized Ta2O5 passivation layer,” IEEE Electron Device Lett., vol. 37, pp. 603-606, 2016.
    [5] P. V. Thanh, B. Trinh, T. Miyasako, P. T. Tue, E. Tokumitsu, and T. Shimoda, “Interface charge trap density of solution processed ferroelectric gate thin film transistor using ITO/PZT/Pt structure,” Ferroelectr. Lett. Sect., vol. 40, pp. 17-29, 2013.
    [6] C. T. Lee, C. C. Chen, and H. Y. Lee, “Three dimensional-stack complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors,” Sci Pep, vol. 8, pp. 3968, 2018.
    [7] B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy, “Stable, solution-processed, high-mobility ZnO thin-film transistors,” J. Am. Chem. Soc., vol. 109, pp. 2750, 2007.
    [8] C. S. Li, Y. N. Li, Y. L. Wu, B. S. Ong, and R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film,” J. Appl. Phys., vol. 102, pp. 076101, 2007.
    [9] S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K. H. Lim, T. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low –temperature, solution-processed and Alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater., vol. 24, pp. 834, 2012.
    [10] D. D. Han, F. Q. Huang, Y. Y. Cong, L. L. Huang, Y. Zhang, P. Shi, W. Yu, X. L. Zhou, L. F. Liu, S. D. Zhang, X. Zhang, and Y. Wang, “Fully transparent flexible dual-layer channel Ga-doped ZnO thin-film transistors on plastic substrates,” Electron. Lett., vol. 51, pp. 1069-1070, 2015.
    [11] H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. Kim, W. Choi, and M. Jeon, “Characteristics of gallium-doped zinc oxide thin-film transistors fabricated at room temperature using radio frequency magnetron sputtering method,” Jpn. J. Appl. Phys., vol. 47, pp. 87-90, 2008.
    [12] W. Yu, D. D. Han, J. C. Dong, Y. Y. Cong, G. D. Cui, Y. Wang, and S. D. Zhang, “AZO thin film transistor performance enhancement by capping an Aluminum layer,” IEEE Trans. Electron Devices, vol. 64, pp.2228-2232, 2017.
    [13] J. C. Dong, D. D. Han, H. J. Li, W. Yu, S. D. Zhang, X. Zhang, and Y. Wang, “Effect of Al doping on performance of ZnO thin film transistors,” App. Surf. Sci., vol. 433, pp. 836-839, 2018.
    [14] Y. Kuo, “Thin film transistor technology—past, present, and future,” The Electrochemical Society, vol. 22, pp. 55-61, 2013.
    [15] A. Sharma, M. Charu and J. Singh, “Performance evaluation of thin film transistors: history, technology development and comparison: a review,” Int. J. Comput. Appl. Technol., vol. 89, pp. 36-40, 2014.
    [16] E. M.Miandoab, H. M. Pishkenari, and A. Meghdari, “Effect of surface energy on nano-resonator dynamic behavior,” Int. J. Mech. Sci., vol. 119, pp. 51-58, 2016.
    [17] R. Z. Zhang, W. H. Chen, and L. N. Yang, “Confinement effect and interface effects on the thermoelectric properties of nano-ceramics: theoretical study,” Acta Phys. Sin., vol. 61, pp. 187201, 2012.
    [18] D. F. Kuang, Q. G. Liu, X. T. Hu, L. C. Hu, and W. L. Guo, “Fabrication and properties of nano metric tunneling junction,” Acta. Phys. Sin., vol. 55, pp. 80-83, 2006.
    [19] D. S. Kang, H. S. Lee, S. K. Han, V. Srivastava, E. S. Babu, S. K. Hong, M. J. Kim, J. H. Song, J. H. Song, H. Kim, and D. Kim, “Growth and optical properties of ZnO nanorods prepared though hydrothermal growth followed by chemical vapor deposition,” J. Alloy. Compd., vol. 509, pp. 5137-5141, 2011.
    [20] M. T. Chen, and J. M. Ting, “Sputter deposition of ZnO nanorods / thin-film structures on Si,” Thin Solid Film, vol. 494, pp. 250-254, 2006.
    [21] S. H. Nam, S. H. Jeong, and J. H. Boo, “Growth behavior and characteristics of one dimensional ZnO nanostructures by metalorganic chemical vapor deposition,” J. Nanosci. Nanotechnol., vol. 11, pp. 1648-1651, 2011.
    [22] R. S. Ajimsha, R. Manoj, P. M. Aneesh, and M. K. Jayaraj, “Violet luminescence from ZnO nanorods grown by room temperature pulsed laser deposition,” Curr. Appl. Phys., vol. 10, pp. 693-697, 2010.
    [23] D. Sheng, M. Zhong, S. M. Lu, N. J. Zhou, X. L. Wang, and J. B. Wang, “Hydrothermal Synthesis and Antibacterial properties of ZnO nanorods,” Rare Metal Mat. Eng., vol. 41, pp. 110-113, 2012.
    [24] W. Arpavate, S. Chuangchote, N. Laosiripojana, J. Wootthikanokkhan, and T. Sagawa, “ZnO nanorod arrays fabricated by hydrothermal method using different thicknesses of seed layers for applications in hybrid photovoltaic cells,” Sens. Mater., vol. 28, pp. 403-408, 2016.
    [25] N. Sriharan, N. Muthukumarasamy, M. Thambidurai, and T. S. Senthil, “Importance of ZnO nanorods prepared from hydrothermal method for various dyes degradation,” J. Optoelectron. Adv. Mater., vol. 19, pp. 634-640, 2017.
    [26] G. Z. Chen, J. G. Yin, L. H. Zhang, P. X. Zhang, X. Y. Wang, Y. C. Liu, C. L. Zhang, S. L. Gu, and Y. Hang, “Optical characteristics of ZnO single Crystal Growth by the hydrothermal method,” Crystallogr. Rep., vol. 60, pp. 1147-1150, 2015.
    [27] K. Maeda, M. Sato, I. Niikura, and T. Fukuda, “Growth of 2 inch ZnO bulk single crystal by the hydrothermal method,” Semicond. Sci. Technol., vol. 20, pp. S49-S54, 2005.
    [28] P. Y. Yang, J. L. Wang, W. C. Tsai, Y. C. Chang, S. J. Wang, I. C. Lee, C. L. Wang, Y. S. Chien, and H. C. Cheng, “High-performance ZnO thin-film transistors with location-controlled crystal grains fabricated by low-temperature hydrothermal method,” J. Nanosci. Nanotechnol., vol. 12, pp. 5783-5787, 2012.
    [29] H. C. Cheng, P. Y. Yang, J. L. Wang, S. Agarwal, W. C. Tsai, S. J. Wang, and I. C. Lee, “Zinc oxide thin film transistors with location-controlled crystal grains fabricated by low temperature hydrothermal method,” IEEE Electron Device Lett., vol. 32, pp. 497-499, 2011.
    [30] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, D. C. Shye, and I. C. Lee, “The effect of oxygen annealing on the electrical characteristics of hydrothermally grown zinc oxide thin-film transistors,” Solid-State Electron., vol. 77, pp. 72-76, 2012.

    CH2參考文獻
    [1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science., vol. 50, pp. 293-340, 2004.
    [2] A. Mang, K. Reimann and S. Rubenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun., vol. 94, pp. 251-254, 1995.
    [3] J. L. Wang, P. Y. Yang, M. H. Juang, T. Y. Hsieh, C. C. Hwang, C. P. Juan, I. C. Lee, “Zinc oxide thin-film transistors fabricated via low temperature hydrothermal method,” Surf. Coat. Technol., vol. 231, pp. 428-432, 2013.
    [4] J. Song, and S. Lim, “Effect of seed layer on the growth of ZnO nanorods,” J. Phys. Chem. C, vol. 111, pp. 596-600, 2007.
    [5] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang, “ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition,” Applied Physics Letters., vol. 88, pp. 173506, 2006.
    [6] Y. C. Tu, S. J. Wang, T. H. Lin, C. H. Hung, T. C. Tsai, R. W. Wu, K. M. Uang, and T. M. Chen, “Hydrothermal growth of quasi-monocrystal ZnO thin films and their application in ultraviolet photodetectors," Int. J. Photoenergy., vol. 2015, pp. 261372, 2015.
    [7] G. Neumann, “On the defect structure of zinc-doped zinc oxide,” Phys. Status Solidi B-Basic Solid State Phys., vol. 105, pp. 605–612, 1981.
    [8] G. J. Shyju, S. D. Roy and C. Sanjeeviraja, “Review on indium zinc oxide films: material properties and preparation techniques,” Mater. Sci. Forum, vol. 671, pp. 21-45, 2009.
    [9] S. Nagarani, M. Jayachandran and C. Sanjeeviraja, “Review on gallium zinc oxide films: material properties and preparation techniques,” Mater. Sci. Forum, vol. 671, pp. 47-68, 2009.
    [10] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater., vol. 10, pp. 013001, 2009.
    [11] S. W. Chen, and J. M. Wu, “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method,” Acta Mater., vol. 59, pp. 841-847, 2011.
    [12] M. K. Lee, C. L. Ho, and C. H. Fan, "Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back," IEEE Photonics technol. Lett., vol. 20, pp. 1293, 2008.
    [13] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chem. Phys. Lett., vol. 365, pp. 300-304, 2002.
    [14] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phys. Lett., vol. 92, pp. 113505, 2008.
    [15] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., vol. 17, pp. 1001-1006, 2005.
    [16] M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Mattausch, and M. Hirose, “Physically-based threshold voltage determination for MOSFET’s of all gate lengths,” IEEE Trans. Electron Devices, vol. 46, pp. 1429-1434, 1999.
    [17] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition,” Electrochemical and Solid-state Letters, vol. 10, pp. 90-93, 2007.
    [18] H. S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth, “Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET,” Solid-State Electronics, vol. 30, pp. 953-968, 1987.

    CH3參考文獻
    [1] 蔡曜駿,「具有銅基板之磷化鋁銦鎵發光二極體製作」,國立中央大學光電科學研究所碩士論文,2005年
    [2] J. M. Shieh, Y. F. Lai, Y. C. Lin, and J. Y. Fang, “Photoluminescence: principles, structure, and applications,” NDL communications, vol. 12, pp. 28-39, 2005.
    [3] H. Yu, S. Lycett, C. Roberts, and R. Murray, “Time resolved study of self –assembled InAs quantum dots,” Appl. Phys. Lett., vol. 69, pp. 4087-4089, 1996.
    [4] A. Y. Kobitski, K. S. Zhuravlev, H. P. Wagner, and D. R. Zahn, “Self-trapped exciton recombination in silicon nanocrystals,” Phys. Rev. B, vol. 63, pp. 115423-1 – 115423-5, 2001.

    CH4參考文獻
    [1] S. W. Chen, and J. M. Wu, “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method,” Acta Mater., vol. 59, pp. 841-847, 2011.
    [2] H. Ghayour, H. R. Rezaie, S. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vaccum, vol. 86, pp. 101-105, 2011.
    [3] J. T. Jang, and H. Ryu, “Effects of ZnO seed layer thickness on the structural and optical properties of ZnO nanorods grown by hydrothermal synthesis,” J. Nanoelectron. Optoelectron., vol. 9, pp. 107-111, 2014.
    [4] B. Ikizler, and S. M. Peker, “Effect of the seed layer thickness on the stability of ZnO nanorod arrays,” Thin Solid Films, vol. 558, pp. 149-159, 2014.
    [5] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006.
    [6] C. M. Shin, J. Y. Lee, J. H. Heo, J. H. Park, C. R. Kim, H. Ryu, J. H. Chang, C. S. Son, W. J. Lee, S. T. Tan, J. L. Zhao, and X. W. Sun, “Effect of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process,” Appl. Surf. Sci., vol. 255, pp. 8501-8505, 2009.
    [7] L. H. Quang, S. J. Chua, K. P. Loh, and E. Fitzgerald, “The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis,” J. Cryst. Growth, vol. 287, pp. 157-161, 2006.
    [8] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, D. C. Shye, and I. C. Lee, “The effects of oxygen annealing on the electrical characteristics of hydrothermally grown zinc oxide thin-film transistors,” Solid State Electron, vol. 77, pp. 72-76, 2012.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE