簡易檢索 / 詳目顯示

研究生: 林忠達
Lin, Chung-Ta
論文名稱: 以銅摻雜釤鍶鈷氧化物作為中溫型固態氧化物燃料電池陰極材料之合成及特性
The Syntheses and Characterizations of Cu-doped Samarium Strontium Cobaltite as Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 121
中文關鍵詞: 中溫型固態氧化物燃料電池陰極材料
外文關鍵詞: cathode material, intermediate-temperature solid oxide fuel cells
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釤鍶鈷氧化物Sm0.5Sr0.5CoO3-δ具有高電子導率及高催化特性,為一般常用的中溫型固態氧化物燃料電池(IT-SOFCs)之陰極材料,因此,選用此成份當做基礎材料並利用異質摻雜的方式進行材料改質,藉此提升電池之發電效率。本論文研究以不同銅含量摻雜釤鍶鈷氧化物作為新陰極材料並進行相關研究,首先,未添加銅之釤鍶鈷氧化物粉末在1000℃下煆燒,為一斜方相的鈣鈦礦結構氧化物,當銅摻雜量從0%增加到30%時,煆燒後的粉末以單一斜方相鈣鈦礦結構存在且隨著銅摻雜量增加使粉末結晶性提高。然而,在銅摻雜量為40%時開始出現SrCoO2.8第二相,並隨著銅的摻雜量繼續增加導致結構結構不穩定而有Sm2CoO4、Sr2.26CuO3.22、Sr2Cu2O5以及Sm1.8Sr1.2Cu2Ox雜相相繼出現。
    接著針對純相Sm0.5Sr0.5Co1-xCuxO3-δ (x=0~0.3, SSCCu)氧化物進行元素化學鍵結、氧含量、熱性質、導電率、熱膨脹係數、與釤摻雜二氧化鈰(SDC)之高溫化學相容性、陰極過電壓行為以及SSCCu/SDC界面電阻等分析。銅摻雜量為20%時具有最大的氧缺陷濃度,其氧含量值為2.635±0.005。將SSCCu塊狀試片從室溫加熱至1200℃,藉由熱機械儀量測厚度變化量,說明銅摻雜會使材料熔點下降且斜方相SSCCu鈣鈦礦結構之熱膨脹係數亦會隨著銅含量增加而減小,介於23.87×10-6 K-1到17.1×10-6 K-1之間(0~40 mole%)。SSCCu與SDC之間具有良好的熱化學相容性,將其混合粉末經1000℃煆燒24 h後,經XRD觀察並無反應物生成。
    以SSCCu作為陰極材料,藉由三極式及對稱式半電池進行陰極過電壓量測與交流阻抗分析以了解SSCCu/SDC界面電化學特性。銅摻雜方式可有效降低陰極過電壓及界面極化電阻,當試片操作溫度為800℃且在開路電壓的狀態下量測,Sm0.5Sr0.5Co0.8Cu0.2O3-δ與SDC的複合電極具有最佳的陰極過電壓行為及低界面極化電阻,分別為25 mV及0.07 Ωcm2。由交流阻抗圖譜說明提高氧缺陷濃度可增加氧離子擴散途徑並改善表面氧氣交換速率。因此,綜合上述實驗結果,銅摻雜釤鍶鈷氧化物極有潛力成為中溫型固態氧化物燃料電池之新陰極材料。

    Sm0.5Sr0.5CoO3-δ (SSC) is a common mixed ionic and electronic conductor for intermediate-temperature solid oxide fuel cells (IT-SOFCs) cathode due to its high electrical conductivity and high catalysis. In this study, new oxygen-deficit cathode materials Cu-doped SSC (SSCCu) are expected to enhance the efficiency of IT-SOFCs. First, the structural of SSCCu are examined as a function of copper addition. As the copper is doped from 0% to 30%, the structure of powder is single orthorhombic perovskite phase and the crystallization increases as copper content increases. Second phase SrCoO2.8, however, formed as the copper is doped 40% and continues to appear Sm2CoO4、Sr2.26CuO3.22、Sr2Cu2O5 and Sm1.8Sr1.2Cu2Ox structures when Cu dopant exceeds 40%.
    Then the x-ray photoelectron spectroscopy、oxygen content、thermal properties、electrical conductivity、thermal expansion、structure compatibility of SSCCu against samarium doped cerium (SDC)、cathodic overpotential and polarization resistance of the SSCCu/SDC interface are examined. Sm0.5Sr0.5Co0.8Cu0.2O3-δ contains maximun oxygen vacancies and the value of its oxygen content is 2.635±0.005. The thermal expansion coefficients of SSCCu are reduced by increasing copper content and the values are in the range of 23.87×10-6 K-1 to 17.1×10-6 K-1 (0~40 mole%) from room temperature to 800℃. Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.3) with SDC annealed at 1000℃ for 24 h in air and no reaction product is found, which reveals that SSCC has a good chemical compatibility with SDC electrolyte.
    According to overpotential measurement and ac impedance analyses by using three-electrode and symmetrical half-cells, it exhibits a good overpotential behavior and the lowest interfacial polarization resistance as 25 mV and 0.07 Ωcm2 respectively. It shows that Cu-doped SSC could increase the path of oxygen ions transport and increase oxygen surface exchange rate effectively from ac Nyquist plots. Therefore, SSCCu is a potential new cathode material for IT-SOFCs.

    目錄 中文摘要................................................................................................................Ι 英文摘要..............................................................................................................ΙΙΙ 誌謝.......................................................................................................................V 目錄.....................................................................................................................VΙ 圖目錄.................................................................................................................XΙ 表目錄.............................................................................................................XVΙΙ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 5 2.1 燃料電池簡介 5 2.1.1 燃料電池結構與原理 5 2.1.2 燃料電池的優點 8 2.1.3 燃料電池的種類與應用 8 2.2 固態氧化物燃料電池 10 2.2.1固態氧化物燃料電池工作原理 10 2.2.2 固態氧化物燃料電池的結構與常用材料 12 2.2.3 固態氧化物燃料電池的裝置類型 14 2.2.4固態氧化物燃料電池的分類 14 2.2.5 SOFC的極化現象 17 2.3 陰極材料結構及性質 20 2.3.1 銅摻雜系列之鈣鈦礦結構陰極材料 20 2.3.2 鈣鈦礦結構之穩定性 20 2.3.3 陰極材料之導電性 22 2.4 陰極材料工作原理與特性 23 2.4.1 陰極的反應途徑 23 2.4.2 陰極之極化現象 24 2.4.3 陰極與電解質間的界面反應特性 27 第三章 實驗方法與步驟 29 3.1 實驗流程 29 3.2 化學藥品選用 29 3.3 銅摻雜釤鍶鈷氧化物之合成 29 3.3.1 固相反應法合成 29 3.3.2 Glycine-Nitrate Process (GNP) 燃燒法合成 31 3.3.3 片狀及條狀SSCCu塊材製作 31 3.4 材料性質分析 31 3.4.1 X光粉末繞射分析 31 3.4.2 掃描式電子顯微鏡與X射線能量散佈光譜儀分析 33 3.4.3 導電性量測 33 3.4.4 氮氣等溫吸/脫附量測 35 3.4.5 孔隙率量測 35 3.4.6 氧含量及結構熱穩定性分析 36 3.4.7 X光光電子能譜分析 38 3.4.8 熔點及熱膨脹分析 38 3.5 陰極材料與電解質間之化學反應穩定性 38 3.5.1 SSCCu/SDC之熱化學相容性分析 39 3.5.2 SSCCu/SDC擴散偶之化學反應性分析 39 3.6 SSCCU與SDC界面電化學分析 39 3.6.1 SSCCu/SDC/Pt及SSCCu/SDC/SSCCu半電池 39 3.6.2 陰極過電壓量測 42 3.6.3 交流阻抗分析 45 3.7 以陰極/電解質複合電極作為陰極材料之單電池分析 45 第四章 銅摻雜對SM0.5SR0.5CO1-XCUXO3-Δ (SSCCU) 鈣鈦礦結構性質及電化學特性之影響 47 4.1 以固相反應法合成SM0.5SR0.5CO1-XCUXO3-Δ (0 X 1)之結構分析 47 4.1.1 XRD結構分析 48 4.1.2 SPuDS預測結構變化 52 4.1.3銅摻雜對結晶性之影響及SEM晶相觀察 53 4.1.4 第二相的生成 53 4.2 銅的添加對於SM0.5SR0.5CO1-XCUXO3-Δ (0 X 0.3)結構的化學鍵結與對缺陷變化之影響 57 4.2.1 銅摻雜對於SSCCu氧化物元素鍵結之影響 57 4.2.2 添加銅對氧含量之影響 63 4.2.3 鈷離子與銅離子之價態 67 4.2.4 鍶摻雜對鈷酸釤之缺陷化學反應 67 4.2.5 銅摻雜形成之缺陷化學反應 70 4.3 銅摻雜釤鍶鈷氧化物之性質 71 4.3.1 銅摻雜對熔點及燒結溫度之影響 71 4.3.2 不同銅添加量下對導電性之影響 73 4.3.2.1 銅摻雜SSCCU之電子導性 73 4.3.2.2 銅摻雜對電性影響的導電機制 75 4.3.3 熱膨脹係數量測 76 4.4 陰極材料與陰極/電解質間之材料高溫穩定性 80 4.4.1 銅摻雜釤鍶鈷氧化物之結構熱穩定性 80 4.4.2 陰極/電解質之熱化學相容性 80 4.5以GNP燃燒法合成SM0.5SR0.5CO1-XCUXO3-Δ (0 X 0.4)之粉末特性 85 4.5.1 煆燒溫度對GNP燃燒法所合成SSCCu之影響 85 4.5.2 GNP燃燒法合成Sm0.5Sr0.5Co1-xCuxO3-δ (0 x 0.4)之結構 88 4.5.3 GNP燃燒法與固相反應法合成之粉末特性比較 88 4.6 SSCCU陰極材料的極化行為 91 4.6.1 陰極過電壓量測 91 4.6.2 陰極過電壓行為分析 93 4.7 交流阻抗分析 95 4.7.1 銅摻雜效應 95 4.7.2 添加SDC離子導體之影響 98 4.7.3 粉末特性之影響 105 4.7.4 SSCCu陰極反應機制 108 第五章 結論 111 參考文獻 113 自述 120 圖目錄 Fig.2-1 Schematic of the operating fuel cell 7 Fig.2-2 Schematic of representation of the solid oxide fuel cells (a)planar configuration (b)tubular configuration (c)monolithic configuration 15 Fig.2-3 Schematic plot of voltage versus current density showing different type of polarizations 16 Fig.2-4 Area specific resistance of Risoe thin film cell showing electrolyte, anode, cathode and diffusion contributions at various temperatures 19 Fig.2-5 Schematic of perovskite structure 21 Fig.2-6 Schematic representation of oxygen transport around the O2/cathode/electrolyte interface:(1) oxygen dissociate adsorption on cathode surface;(2) surface diffusion of adsorption oxygen;(3) incorporation of adsorption oxygen via TPB;(4) bulk diffusion of oxygen through cathode;(5) oxygen ion transfer at the cathode/electrolyte interface 24 Fig.3-1 The flow chart of SSCCu as cathode material for intermediate-temperature SOFC 30 Fig.3-2 The experimental process of SSCCu synthesis by (a) Solid-state reaction ; (b) Glycine-Nitrate Process (GNP) 32 Fig.3-3 Schematic diagram for four-probe dc technique 34 Fig.3-4 The experimental data of thermogravimetric hydrogen reduction method used for estimation of oxygen content in perovskite oxide 37 Fig.3-5 Schematic diagram for measuring the electrochemical impedance spectroscopy (EIS) 40 Fig.3-6 Schematic diagrams of SDC-supported half cell for electrochemical analyses:(a) three electrode cell; (b) symmetrical cell 41 Fig.3-7 Schematic diagram of the current-interruption circuit (arranged for study of the cathodic overpotential) 43 Fig.3-8 Schematic illustration of the transient behavior of the relaxation curve before and after current interruption shown on the screen of the oscilloscope 44 Fig.4-1 XRD patterns of SSCCu as a function of Cu contents between 0~30 mole% after annealing at 1000℃ for 24 h in air 49 Fig.4-2 XRD patterns of SSCCu as a function of Cu contents between 30~100 mole% after annealing at 1000℃ for 24 h in air 50 Fig.4-3 The lattice parameter (a, b, and c)and cell volume of orthorhombic perovskite Sm0.5Sr0.5Co1-xCuxO3 vs. copper content 51 Fig.4-4 The SEM micrographs of sintered samples of (a) undoped, (b) 10%, (c) 20%, and (d) 30% of Cu-doped Sm0.5Sr0.5Co1-xCuxO3-δ 54 Fig.4-5 Schematic of Ruddelsdon-Popper phase perovskite-related intergrowth oxide, An+1BnO3n+1: (a) n = 1, (b) n = 2, (c) n = 3 56 Fig.4-6 The Sm3d core level XPS for Sm0.5Sr0.5Co1-xCuxO3-δ samples with doping contents of (a)0 mole%, (b)10 mole%, (c)20 mole%, (d)30 mole% 58 Fig.4-7 The O1s core level XPS for Sm0.5Sr0.5Co1-xCuxO3-δ samples with doping contents of (a)0 mole%, (b)10 mole%, (c)20 mole%, (d)30 mol% 60 Fig.4-8 The Sr3d core level XPS for Sm0.5Sr0.5Co1-xCuxO3-δ samples with doping contents of (a)0 mole%, (b)10 mole%, (c)20 mole%, (d)30 mole% 61 Fig.4-9 The Co2p core level XPS for Sm0.5Sr0.5Co1-xCuxO3-δ samples with doping contents of (a)0 mole%, (b)10 mole%, (c)20 mole%, (d)30 mole% 62 Fig.4-10 Weight loss of precursors including (a) Sm2O3, (b) SrCO3, (c) CoO, (d) CuO heating with 2℃/min in hydrogen atmosphere 64 Fig.4-11 Weight loss of SSCCu as a function of Cu-doping content measured by using TG hydrogen reduction method:(a) 0 mole%, (b) 10 mole%, (c) 20 mole%, (d) 30 mole% Cu content 65 Fig.4-12 Oxygen content of SSCCu as a function of Cu-doping content measured by using TG hydrogen reduction method 66 Fig.4-13 XRD patterns of SSCC as a function of Cu-doping amount reduced in hydrogen atmosphere at 800℃ for 12 h 68 Fig.4-14 Sintering shrinkage data for Sm0.5Sr0.5Co1-xCuxO3-δ compositions for x=0, 0.1, 0.2, 0.3 and 0.4 respectively 72 Fig.4-15 Variations of the electrical conductivity of Sm0.5Sr0.5Co1-xCuxO3-δ compositions (0 x 0.3) with temperature in air 74 Fig.4-16 Thermal expansion curves of Sm0.5Sr0.5Co1-xCuxO3-δ compositions (0 x 0.4) and SDC in air as function of temperature 77 Fig.4-17 Variations of oxygen content of Sm0.5Sr0.5CoO3-δ and Sm0.5Sr0.5Co0.8Cu0.2O3-δ compounds with temperature under air 81 Fig.4-18 Powder XRD patterns of SDC synthesized by GNP (a) as-calcined ash (b) calcined at 600℃ for 4h 82 Fig.4-19 XRD patterns of Sm0.5Sr0.5Co1-xCuxO3-δ (x=0~0.3)/SDC powders mixture as annealed at 1000℃ for 24h 84 Fig.4-20 TG/DTA spectra for SSCCu precursor chelated with Glycine and heated at a rate of 5℃/min in air 86 Fig.4-21 XRD patterns of SSC as a function of calcined temperature between 200~1000℃ for 12 h in air by using GNP 87 Fig.4-22 Powder XRD patterns of SSCCu as a function of Cu contents after synthesis and annealing at 1000℃ for 4 hrs in air by using GNP….. 89 Fig.4-23 TEM photograph of Sm0.5Sr0.5Co0.8Cu0.2O3-δ as synthesized by GNP combustion method 90 Fig.4-24 Cathodic overpotentials measured at 700℃ and 800℃ as function of current density for Sm0.5Sr0.5Co1-xCuxO3-δ (x = 0~0.3) mixed with 30 wt% SDC 92 Fig.4-25 Cathodic overpotential measured for ( ) 700℃ and ( ) 800℃ as function of copper content at current density 400 mA/cm2 94 Fig.4-26 Impedance spectra of different copper content for Sm0.5Sr0.5Co1-xCuxO3-δ (x = 0~0.3) at 973K in air under open circuit voltage:( ) 0 mole%, ( ) 10 mole%, ( ) 20 mole%, ( ) 30 mole% 96 Fig.4-27 Arrhenius plots of area-specific resistance of different copper content Sm0.5Sr0.5Co1-xCuxO3-δ (x = 0~0.3) electrodes for SDC electrolyte:( ) 0 mole%, ( ) 10 mole%, ( ) 20 mole%, ( ) 30 mole% 97 Fig.4-28 The SEM micrographs of top view for SSCCu(70)-SDC(30) composite cathode sintered at 1000℃ for 4 h:(a) 0 mole%, (b) 10 mole%, (c) 20 mole%, (d) 30 mole% copper content 99 Fig.4-29 The SEM micrographs of cross-section view for SSCCu(70)-SDC(30) composite cathode sintered at 1000℃ for 4 h:(a) 0 mole%, (b) 10 mole%, (c) 20 mole%, (d) 30 mole% copper content 100 Fig.4-30 Impedance spectra of different copper content for Sm0.5Sr0.5Co1-xCuxO3-δ (x = 0~0.3) mixed with 30 wt% SDC at 973K in air under open circuit voltage:( ) 0 mole%, ( ) 10 mole%, ( ) 20 mole%, ( ) 30 mole% 101 Fig.4-31 Arrhenius plots of area-specific resistance of different copper content Sm0.5Sr0.5Co1-xCuxO3-δ (x = 0~0.3) electrodes mixed with 30 wt%SDC for SDC electrolyte:( ) 0 mole%, ( ) 10 mole%, ( ) 20 mole%, ( ) 30 mole% 103 Fig.4-32 The SEM micrographs of AC impedance samples for unmixed and 30 wt% SDC-mixed electrode (Top view) 104 Fig.4-33 Impedance spectra of Sm0.5Sr0.5Co0.8Cu0.2O3-δ at 973K in air under open circuit voltage:( ) solid state reaction (SSR), ( ) SSR+30 wt% SDC, ( ) Glycine-Nitrate Process (GNP), ( ) GNP+30 wt% SDC 106 Fig.4-34 Arrhenius plots of area-specific resistance of different conditions of Sm0.5Sr0.5Co0.8Cu0.2O3-δ electrodes for SDC electrolyte:( ) solid state reaction (SSR), ( ) SSR+30 wt% SDC, ( ) Glycine-Nitrate Process (GNP), ( ) GNP+30 wt% SDC 107 Fig.4-35 Equivalent circuit model including Re, Rct, Rchem resistance and Cdl, Cchem capacitance for SSCCu cathode reactions 109 Fig.4-36 Schematic of reaction pathways of oxygen reduction on cathode/electrolyte surface including oxygen exchange rate, oxygen diffusion rate and charge transfer rate 110 表目錄 Table.2-1 Typical components, operating conditions and electrochemical reactions in fuel cells 9 Table.4-2 The thermal expansion coefficients of Cu-doped SSC system and SDC over temperature range room temperature-800℃ 78

    1. L. Carrette, K. A Friedrich, U. Stimming, Chem. Phys. Chem., 1, 162-193 (2000).
    2. B. C. H. Steele and A. Heinzel, Nature, 414, 345-352 (2001).
    3. K. Kendall, International Materials Reviews, (50), 5, 257-264 (2005).
    4. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Nature, 410, 910-913 (2001).
    5. P. J. Gellings and H. J. M. Bouwmeester:’The CRC Handbook of Solid State Electrochemistry’, Chapter 12, CRC Press, Florida, 407-438 (1997).
    6. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki, J. Power Sources, 106, 142 (2002).
    7. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, and M. Dokiya, J. Electrochem. Soc., (9), 147, 3178-3182 (2000).
    8. J. Fleig, J. Power Sources, 105, 228-238 (2002).
    9. P. J. Gellings and H. J. M. Bouwmeester:’The CRC Handbook of Solid State Electrochemistry’, Chapter 12, CRC Press, Florida, 413-418 (1997).
    10. B. C. H. Steele, Solid State Ionics, 129, 95-110 (2000).
    11. H. Y. Tu, Y. Takeda, N. Imanishi, and O. Yamamoto, Solid State Ionics, 100, 283-288 (1997).
    12. H. Fugunaga, M. Koyama, N. Takahashi, C. Wen, and K. Yamada, Solid State Ionics, 132, 279-285 (2000).
    13. M. Koyama, C. Wen, T. Masuyama, J. Otomo, H. Fugunaga, K. Yamada, K. Eguchi, and H. Takahashi, J. Electrochem. Soc., (148), 7, A795-A801 (2001).
    14. S. Wang, T. Chen, and S. Chen, J. Electrochem. Soc., (151), 9, A1461-A1467 (2004).
    15. S. Simner, M. Anderson, J. Bonnett, and J. Stevenson, Solid State Ionics, 175, 79-81 (2004).
    16. Z. Shao and S. M. Haile, Nature, 43, 170-173 (2004).
    17. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, Materials Letters, (10), 1-2, 6-12 (1990).
    18. W. R. Grove, On voltaic series and the combination of gases by platinum, Phil. Mag. Ser. (3), 14, 127-130 (1839).
    19. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 2, Wiley, UK, 25-43 (2003).
    20. 余河潔:’以鍶摻雜做為中溫固態氧化物燃料電池陰極材料之研究’,國立成功大學材料科學及工程學系博士論文,(2005)
    21. W. Nernst:’Material for electriclamp glowers’, US Patent 685730, filed 24 August (1899).
    22. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 8, Wiley, UK, 229-308 (2003).
    23. N. Q. Minh and T. Takahashi:’Science and technology of ceramic fuel cells’, Elsevier, Amsterdam, 16-17 (1995).
    24. P. Costamagna and K. Honegger, J. Electrochem. Soc., 145, 3995 (1998).
    25. S.C. Singhal, MRS Bulletin, March, 16 (2000).
    26. T. Ishihara, M. Honda, T.Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, J. Am. Ceram. Soc., 145, 3177 (1993).
    27. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).
    28. Z. Xie, W. Zhu, B. Zhu, and C. Xia, Electrochemica Acta, 51, 3052-3057 (2006).
    29. L. Borovskikh, G. Mazo, E. Kemnitz, Solid State Sciences, 5, 409-417 (2003).
    30. S. P. Simner, M. D. Anderson, and J. W. Stevenson, J. Am. Ceram. Soc., (87) , 8, 1471-1476 (2004).
    31. H. C. Yu and K. Z. Fung, Mater. Res. Bull., 38, 38 (2003).
    32. E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, and Ph. Stevens, Solid State Ionics, 176, 2717-2725 (2005).
    33. H. U. Anderson and F. Tietz:’High temperature solid oxide fuel cells: fundamentals, design and applications’,chapter 7, Elsevier, Oxford, 173-195 (2003).
    34. W. Vielstich, H. A. Gasteiger, and A. Lamm:’Handbook of fuel cells-fundamentals, technology and application’, volume 1:Fundamentals and Survey of system, chapter 20, Wiley, USA, 342-347 (2001).
    35. J. M. Ralph, C. Rossignol, and R. Kumar, J. Electrochem. Soc., (11), A1518-A1522 (2003).
    36. N. P. Brandon et al., Journal of Fuel Cell Science and Technology, 1, 61-65 (2004).
    37. T. Hibino, A. Hashimoto, T. Inoue, J. I. Tokuno, S. I. Yoshida, and M. Sano, Science, 288, 2031-2033 (2000).
    38. J. Fleig, Annu. Rev. Mater. Res., 33, 361-382 (2003).
    39. S. B. Adler, Chem. Rev., 104, 4791-4843 (2004).
    40. I. T. Ellen and A.V. Virkar:’High temperature solid oxide fuel cells: fundamentals, design and applications’, chapter 9, Elsevier, Oxford,
    229-260 (2003).
    41. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 3, Wiley, UK, 53-59 (2003).
    42. S. M. Haile, Acta Materialia, 51, 5981-6000 (2003).
    43. M. Mogensen and P. V. Hendriksen:’High temperature solid oxide fuel cells:fundamentals, design and applications’, chapter 10, Elsevier, Oxford, 261-289 (2003).
    44. R. Barfod, A. Hagen, S. Ramousse, P. V. Hendriksen, and M. Mogensen, Fuel Cells, (06), 2, 141-145 (2006).
    45. J. M. Ralph, A. C. Schoeler, and M. Krumpelt, J. Mater. Sci., 36, 1161-1172 (2001).
    46. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 1, Wiley, USA, 39-40 (1997).
    47. V. M. Goldschmidt, Naturwissenschaften, 14, 477 (1926).
    48. F. D. Bloss:’Crystallography and crystal chemistry’, H. Rinehart and Winston, New York, 253 (1971).
    49. R. A. De Souza, J. A. Kilner, Solid State Ionics , 126, 153 (1999).
    50. S. P. Jiang and S. H. Chen, Journal of Materials Science , 39, 4405-4439 (2004).
    51. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, J. Power Sources, 106, 224-230 (2002).
    52. T. Kenjo, S. Asawa, and K. Fujikawa, J. Electrochem. Soc., 138, 349 (1991).
    53. C. Tanner, K. Z. Fung, and A. V. Virka, J. Electrochem. Soc., 144, 21 (1997).
    54. S. B. Alder, J. A. Lane, and B. C. H. Steele, J. Electrochem. Soc., (11), 143, 3554-3564 (1996).
    55. S. B. Alder, Solid State Ionics, 135, 603-612 (2000).
    56. B. C. H. Steele, K. M. Hori, and S. Uchino, Solid State Ionics, 135, 445-450 (2000).
    57. N. P. Bansal and Z. Zhong, J. Power Sources, 158, 148-153 (2006).
    58. M. W. Lufaso and P. M. Woodward, Acta Crystallographica Section B, 57, 725-738 (2001).
    59. B. D. Cullity and S. R. Stock:’Elements of x-ray diffraction (Third edition)’, Prentice Hall, New Jersey, 170 (2001).
    60. K. Tabata and S. Kohiki, J. Materials Science, 22, 3781 (1987).
    61. 廖聖茹,黃依蘋,林仁章,黃瑞呈:’多孔性奈米材料比表面積/孔隙度檢測技術’ , 工業材料, 190期, 115 (2002).
    62. M. Karppinen, M. Matvejeff, K. Salomäki, and K. Yamauchi, J. Mater. Chem., 12, 1761-1764 (2002).
    63. K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg, Mater. Res. Bull., 40, 257-263 (2005).
    64. E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy, and J. C. Grenier, Solid State Sciences, 5, 973-981 (2003).
    65. S. McIntosh, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., (10), 150, A1305-A1312 (2003).
    66. S. B. Alder, J. Electrochem. Soc., (5), 149, E166-E172 (2002).
    67. E. Barsoukov and J. R. Macdonald:’Impedance Spectroscopy-Theory, Experimental, and Applictions’, chapter 4, Wiley, USA, 227-238 (2005).
    68. D. Y. Wang and A. S. Nowick, J. Electrochem. Soc., (7), 126, 1155-1165 (1979).
    69. I. Riess, M. Gödickemeier, and L. J. Gauckler, Solid State Ionics, 90, 91-104 (1996).
    70. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, Solid State Ionics, 53-56, 597-592 (1992).
    71. K. Yasumoto, Y. Inagaki, M. Shiono, and M. Dokiya, Solid State Ionics, 148, 545-549 (2002).
    72. C. Xia, Y. Lang, and G. Meng, Fuel Cells, (1-2), 4, 41-47 (2004).
    73. V. V. Kharton, E. V. Tsipis, A. A. Yaremchenko, and J. R. Frade, Solid State Ionics, 166, 327-337 (2004).
    74. Y. Wang, H. Nie, S. Wang, T. L. Wen, U. Guth, and V. Valshook, Materilas Letters, 60, 1174-1178 (2006).
    75. J. S. Zhou and J. B. Goodenough, Physical Review Letters, (94), 065501-1~4 (2005).
    76. Z. Hiroi and M. Takano, Nature, 377, 41 (1995).
    77. H. C. Yu and K. Z. Fung, J. Mater. Res., 19, 943 (2004).
    78. R.D. Shannon, Acta Crystallographic, A32, 751 (1976).
    79. K. T. Lee, D.M. Bierschenk, and A. Manthiram, J. Electrochem. Soc., (7), 153, A1255-A1260 (2006).
    80. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 1, Wiley, USA, 59-65 (1997).
    81. E. Sacher, J. E. Klemberg-Sapieha, A. Cambron, A. Okoniewski, and A. Yelon, J. Electron Spectrosc. Relat. Phenom., 48, c7-c12 (1989).
    82. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bamben:’Handbook of X-ray photoelectron spectroscopy’, Physical Electronics Inc., USA, (1995).
    83. Q. H. Wu, M. Liu, and W. Jaegermann, Materials Letters, 59, 1980-1983 (2005).
    84. Q. H. Wu, A. Thissen, W. Jaegermann, and M. Liu, Applied Surface
    Science, 236, 473-478 (2004).
    85. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bamben:’Handbook of X-ray photoelectron spectroscopy’, Physical Electronics Inc., USA, 148-149 (1995).
    86. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, and N. Yamazoe, Solid State Ionics, 48, 207-212 (1991).
    87. E. Bucher and W. Sitte, J. Electroceramics, 13, 779-784 (2004).
    88. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 2, Wiley, USA, 110-111 (1997).
    89. Z. Cheng, S. Zha, L. Aguilar, and M. Liu, Solid State Ionics, 176, 1921-1928 (2005).
    90. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Solid State Ionics, 76, 259-271 (1995).
    91. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., (9), 143, 2722-22729 (1996).
    92. D. P. Karim and A. T. Aldred, Phys. Rev. B, (6), 20, 2255 (1979).
    93. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B, 46, 6382 (1992).
    94. H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, and H. Tagawa, Solid State Ionics, 132, 227-233 (2000).
    95. K. T. Lee and A. Manthiram, J. Power Sources, In press (2005).
    96. K. T. Lee and A. Manthiram, J. Electrochem. Soc., (1), 152, A197-A204 (2005).
    97. H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao, and K. A. Hu, Solid State Ionics, 177, 901-906 (2006).
    98. K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc., (145), 9, 3220-3227 (1998).
    99. E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy, and J. C. Grenier, Solid State Sciences, 5, 973-981 (2003).
    100. K. T. Lee and A. Manthiram, Chem. Mater., 18, 1621-1626 (2006).
    101. L. Kindermann, D. das, D. Bahadur, R. Weib, H. Nickel, and K. Hilpert, J. Am. Ceram. Soc., 80, 909 (1992).
    102. A. V. Virka, J. Chen, C. W. Yanner, and J. W. Kim, Solid State Ionics, 131, 189-198 (2000).
    103. B. Wei, Z. Lü, S. Li, Y. Liu, K. Liu, and W. Su, Electrochemical and Solid-State Letters, (8), 8, A428-A431 (2005).
    104. S. Kim, Y. L. Yang, A. J. Jacobson, and B. Abeles, Solid State Ionics, 106, 189-195 (1998).
    105. C. Xia, W. Ranch, F. Chen, and M. Liu, Solid State Ionics, 149, 11-19 (2002).
    106. Y. Liu, S. Zha, and M. Liu, Chem. ,Mater., 16, 3502-3506 (2004).

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE