| 研究生: |
林忠達 Lin, Chung-Ta |
|---|---|
| 論文名稱: |
以銅摻雜釤鍶鈷氧化物作為中溫型固態氧化物燃料電池陰極材料之合成及特性 The Syntheses and Characterizations of Cu-doped Samarium Strontium Cobaltite as Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 中溫型固態氧化物燃料電池 、陰極材料 |
| 外文關鍵詞: | cathode material, intermediate-temperature solid oxide fuel cells |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釤鍶鈷氧化物Sm0.5Sr0.5CoO3-δ具有高電子導率及高催化特性,為一般常用的中溫型固態氧化物燃料電池(IT-SOFCs)之陰極材料,因此,選用此成份當做基礎材料並利用異質摻雜的方式進行材料改質,藉此提升電池之發電效率。本論文研究以不同銅含量摻雜釤鍶鈷氧化物作為新陰極材料並進行相關研究,首先,未添加銅之釤鍶鈷氧化物粉末在1000℃下煆燒,為一斜方相的鈣鈦礦結構氧化物,當銅摻雜量從0%增加到30%時,煆燒後的粉末以單一斜方相鈣鈦礦結構存在且隨著銅摻雜量增加使粉末結晶性提高。然而,在銅摻雜量為40%時開始出現SrCoO2.8第二相,並隨著銅的摻雜量繼續增加導致結構結構不穩定而有Sm2CoO4、Sr2.26CuO3.22、Sr2Cu2O5以及Sm1.8Sr1.2Cu2Ox雜相相繼出現。
接著針對純相Sm0.5Sr0.5Co1-xCuxO3-δ (x=0~0.3, SSCCu)氧化物進行元素化學鍵結、氧含量、熱性質、導電率、熱膨脹係數、與釤摻雜二氧化鈰(SDC)之高溫化學相容性、陰極過電壓行為以及SSCCu/SDC界面電阻等分析。銅摻雜量為20%時具有最大的氧缺陷濃度,其氧含量值為2.635±0.005。將SSCCu塊狀試片從室溫加熱至1200℃,藉由熱機械儀量測厚度變化量,說明銅摻雜會使材料熔點下降且斜方相SSCCu鈣鈦礦結構之熱膨脹係數亦會隨著銅含量增加而減小,介於23.87×10-6 K-1到17.1×10-6 K-1之間(0~40 mole%)。SSCCu與SDC之間具有良好的熱化學相容性,將其混合粉末經1000℃煆燒24 h後,經XRD觀察並無反應物生成。
以SSCCu作為陰極材料,藉由三極式及對稱式半電池進行陰極過電壓量測與交流阻抗分析以了解SSCCu/SDC界面電化學特性。銅摻雜方式可有效降低陰極過電壓及界面極化電阻,當試片操作溫度為800℃且在開路電壓的狀態下量測,Sm0.5Sr0.5Co0.8Cu0.2O3-δ與SDC的複合電極具有最佳的陰極過電壓行為及低界面極化電阻,分別為25 mV及0.07 Ωcm2。由交流阻抗圖譜說明提高氧缺陷濃度可增加氧離子擴散途徑並改善表面氧氣交換速率。因此,綜合上述實驗結果,銅摻雜釤鍶鈷氧化物極有潛力成為中溫型固態氧化物燃料電池之新陰極材料。
Sm0.5Sr0.5CoO3-δ (SSC) is a common mixed ionic and electronic conductor for intermediate-temperature solid oxide fuel cells (IT-SOFCs) cathode due to its high electrical conductivity and high catalysis. In this study, new oxygen-deficit cathode materials Cu-doped SSC (SSCCu) are expected to enhance the efficiency of IT-SOFCs. First, the structural of SSCCu are examined as a function of copper addition. As the copper is doped from 0% to 30%, the structure of powder is single orthorhombic perovskite phase and the crystallization increases as copper content increases. Second phase SrCoO2.8, however, formed as the copper is doped 40% and continues to appear Sm2CoO4、Sr2.26CuO3.22、Sr2Cu2O5 and Sm1.8Sr1.2Cu2Ox structures when Cu dopant exceeds 40%.
Then the x-ray photoelectron spectroscopy、oxygen content、thermal properties、electrical conductivity、thermal expansion、structure compatibility of SSCCu against samarium doped cerium (SDC)、cathodic overpotential and polarization resistance of the SSCCu/SDC interface are examined. Sm0.5Sr0.5Co0.8Cu0.2O3-δ contains maximun oxygen vacancies and the value of its oxygen content is 2.635±0.005. The thermal expansion coefficients of SSCCu are reduced by increasing copper content and the values are in the range of 23.87×10-6 K-1 to 17.1×10-6 K-1 (0~40 mole%) from room temperature to 800℃. Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.3) with SDC annealed at 1000℃ for 24 h in air and no reaction product is found, which reveals that SSCC has a good chemical compatibility with SDC electrolyte.
According to overpotential measurement and ac impedance analyses by using three-electrode and symmetrical half-cells, it exhibits a good overpotential behavior and the lowest interfacial polarization resistance as 25 mV and 0.07 Ωcm2 respectively. It shows that Cu-doped SSC could increase the path of oxygen ions transport and increase oxygen surface exchange rate effectively from ac Nyquist plots. Therefore, SSCCu is a potential new cathode material for IT-SOFCs.
1. L. Carrette, K. A Friedrich, U. Stimming, Chem. Phys. Chem., 1, 162-193 (2000).
2. B. C. H. Steele and A. Heinzel, Nature, 414, 345-352 (2001).
3. K. Kendall, International Materials Reviews, (50), 5, 257-264 (2005).
4. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Nature, 410, 910-913 (2001).
5. P. J. Gellings and H. J. M. Bouwmeester:’The CRC Handbook of Solid State Electrochemistry’, Chapter 12, CRC Press, Florida, 407-438 (1997).
6. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki, J. Power Sources, 106, 142 (2002).
7. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, and M. Dokiya, J. Electrochem. Soc., (9), 147, 3178-3182 (2000).
8. J. Fleig, J. Power Sources, 105, 228-238 (2002).
9. P. J. Gellings and H. J. M. Bouwmeester:’The CRC Handbook of Solid State Electrochemistry’, Chapter 12, CRC Press, Florida, 413-418 (1997).
10. B. C. H. Steele, Solid State Ionics, 129, 95-110 (2000).
11. H. Y. Tu, Y. Takeda, N. Imanishi, and O. Yamamoto, Solid State Ionics, 100, 283-288 (1997).
12. H. Fugunaga, M. Koyama, N. Takahashi, C. Wen, and K. Yamada, Solid State Ionics, 132, 279-285 (2000).
13. M. Koyama, C. Wen, T. Masuyama, J. Otomo, H. Fugunaga, K. Yamada, K. Eguchi, and H. Takahashi, J. Electrochem. Soc., (148), 7, A795-A801 (2001).
14. S. Wang, T. Chen, and S. Chen, J. Electrochem. Soc., (151), 9, A1461-A1467 (2004).
15. S. Simner, M. Anderson, J. Bonnett, and J. Stevenson, Solid State Ionics, 175, 79-81 (2004).
16. Z. Shao and S. M. Haile, Nature, 43, 170-173 (2004).
17. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, Materials Letters, (10), 1-2, 6-12 (1990).
18. W. R. Grove, On voltaic series and the combination of gases by platinum, Phil. Mag. Ser. (3), 14, 127-130 (1839).
19. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 2, Wiley, UK, 25-43 (2003).
20. 余河潔:’以鍶摻雜做為中溫固態氧化物燃料電池陰極材料之研究’,國立成功大學材料科學及工程學系博士論文,(2005)
21. W. Nernst:’Material for electriclamp glowers’, US Patent 685730, filed 24 August (1899).
22. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 8, Wiley, UK, 229-308 (2003).
23. N. Q. Minh and T. Takahashi:’Science and technology of ceramic fuel cells’, Elsevier, Amsterdam, 16-17 (1995).
24. P. Costamagna and K. Honegger, J. Electrochem. Soc., 145, 3995 (1998).
25. S.C. Singhal, MRS Bulletin, March, 16 (2000).
26. T. Ishihara, M. Honda, T.Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, J. Am. Ceram. Soc., 145, 3177 (1993).
27. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).
28. Z. Xie, W. Zhu, B. Zhu, and C. Xia, Electrochemica Acta, 51, 3052-3057 (2006).
29. L. Borovskikh, G. Mazo, E. Kemnitz, Solid State Sciences, 5, 409-417 (2003).
30. S. P. Simner, M. D. Anderson, and J. W. Stevenson, J. Am. Ceram. Soc., (87) , 8, 1471-1476 (2004).
31. H. C. Yu and K. Z. Fung, Mater. Res. Bull., 38, 38 (2003).
32. E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, and Ph. Stevens, Solid State Ionics, 176, 2717-2725 (2005).
33. H. U. Anderson and F. Tietz:’High temperature solid oxide fuel cells: fundamentals, design and applications’,chapter 7, Elsevier, Oxford, 173-195 (2003).
34. W. Vielstich, H. A. Gasteiger, and A. Lamm:’Handbook of fuel cells-fundamentals, technology and application’, volume 1:Fundamentals and Survey of system, chapter 20, Wiley, USA, 342-347 (2001).
35. J. M. Ralph, C. Rossignol, and R. Kumar, J. Electrochem. Soc., (11), A1518-A1522 (2003).
36. N. P. Brandon et al., Journal of Fuel Cell Science and Technology, 1, 61-65 (2004).
37. T. Hibino, A. Hashimoto, T. Inoue, J. I. Tokuno, S. I. Yoshida, and M. Sano, Science, 288, 2031-2033 (2000).
38. J. Fleig, Annu. Rev. Mater. Res., 33, 361-382 (2003).
39. S. B. Adler, Chem. Rev., 104, 4791-4843 (2004).
40. I. T. Ellen and A.V. Virkar:’High temperature solid oxide fuel cells: fundamentals, design and applications’, chapter 9, Elsevier, Oxford,
229-260 (2003).
41. J. Larminie and A. Dicks:’Fuel cell systems explained’, chapter 3, Wiley, UK, 53-59 (2003).
42. S. M. Haile, Acta Materialia, 51, 5981-6000 (2003).
43. M. Mogensen and P. V. Hendriksen:’High temperature solid oxide fuel cells:fundamentals, design and applications’, chapter 10, Elsevier, Oxford, 261-289 (2003).
44. R. Barfod, A. Hagen, S. Ramousse, P. V. Hendriksen, and M. Mogensen, Fuel Cells, (06), 2, 141-145 (2006).
45. J. M. Ralph, A. C. Schoeler, and M. Krumpelt, J. Mater. Sci., 36, 1161-1172 (2001).
46. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 1, Wiley, USA, 39-40 (1997).
47. V. M. Goldschmidt, Naturwissenschaften, 14, 477 (1926).
48. F. D. Bloss:’Crystallography and crystal chemistry’, H. Rinehart and Winston, New York, 253 (1971).
49. R. A. De Souza, J. A. Kilner, Solid State Ionics , 126, 153 (1999).
50. S. P. Jiang and S. H. Chen, Journal of Materials Science , 39, 4405-4439 (2004).
51. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, J. Power Sources, 106, 224-230 (2002).
52. T. Kenjo, S. Asawa, and K. Fujikawa, J. Electrochem. Soc., 138, 349 (1991).
53. C. Tanner, K. Z. Fung, and A. V. Virka, J. Electrochem. Soc., 144, 21 (1997).
54. S. B. Alder, J. A. Lane, and B. C. H. Steele, J. Electrochem. Soc., (11), 143, 3554-3564 (1996).
55. S. B. Alder, Solid State Ionics, 135, 603-612 (2000).
56. B. C. H. Steele, K. M. Hori, and S. Uchino, Solid State Ionics, 135, 445-450 (2000).
57. N. P. Bansal and Z. Zhong, J. Power Sources, 158, 148-153 (2006).
58. M. W. Lufaso and P. M. Woodward, Acta Crystallographica Section B, 57, 725-738 (2001).
59. B. D. Cullity and S. R. Stock:’Elements of x-ray diffraction (Third edition)’, Prentice Hall, New Jersey, 170 (2001).
60. K. Tabata and S. Kohiki, J. Materials Science, 22, 3781 (1987).
61. 廖聖茹,黃依蘋,林仁章,黃瑞呈:’多孔性奈米材料比表面積/孔隙度檢測技術’ , 工業材料, 190期, 115 (2002).
62. M. Karppinen, M. Matvejeff, K. Salomäki, and K. Yamauchi, J. Mater. Chem., 12, 1761-1764 (2002).
63. K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg, Mater. Res. Bull., 40, 257-263 (2005).
64. E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy, and J. C. Grenier, Solid State Sciences, 5, 973-981 (2003).
65. S. McIntosh, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., (10), 150, A1305-A1312 (2003).
66. S. B. Alder, J. Electrochem. Soc., (5), 149, E166-E172 (2002).
67. E. Barsoukov and J. R. Macdonald:’Impedance Spectroscopy-Theory, Experimental, and Applictions’, chapter 4, Wiley, USA, 227-238 (2005).
68. D. Y. Wang and A. S. Nowick, J. Electrochem. Soc., (7), 126, 1155-1165 (1979).
69. I. Riess, M. Gödickemeier, and L. J. Gauckler, Solid State Ionics, 90, 91-104 (1996).
70. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, Solid State Ionics, 53-56, 597-592 (1992).
71. K. Yasumoto, Y. Inagaki, M. Shiono, and M. Dokiya, Solid State Ionics, 148, 545-549 (2002).
72. C. Xia, Y. Lang, and G. Meng, Fuel Cells, (1-2), 4, 41-47 (2004).
73. V. V. Kharton, E. V. Tsipis, A. A. Yaremchenko, and J. R. Frade, Solid State Ionics, 166, 327-337 (2004).
74. Y. Wang, H. Nie, S. Wang, T. L. Wen, U. Guth, and V. Valshook, Materilas Letters, 60, 1174-1178 (2006).
75. J. S. Zhou and J. B. Goodenough, Physical Review Letters, (94), 065501-1~4 (2005).
76. Z. Hiroi and M. Takano, Nature, 377, 41 (1995).
77. H. C. Yu and K. Z. Fung, J. Mater. Res., 19, 943 (2004).
78. R.D. Shannon, Acta Crystallographic, A32, 751 (1976).
79. K. T. Lee, D.M. Bierschenk, and A. Manthiram, J. Electrochem. Soc., (7), 153, A1255-A1260 (2006).
80. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 1, Wiley, USA, 59-65 (1997).
81. E. Sacher, J. E. Klemberg-Sapieha, A. Cambron, A. Okoniewski, and A. Yelon, J. Electron Spectrosc. Relat. Phenom., 48, c7-c12 (1989).
82. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bamben:’Handbook of X-ray photoelectron spectroscopy’, Physical Electronics Inc., USA, (1995).
83. Q. H. Wu, M. Liu, and W. Jaegermann, Materials Letters, 59, 1980-1983 (2005).
84. Q. H. Wu, A. Thissen, W. Jaegermann, and M. Liu, Applied Surface
Science, 236, 473-478 (2004).
85. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bamben:’Handbook of X-ray photoelectron spectroscopy’, Physical Electronics Inc., USA, 148-149 (1995).
86. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, and N. Yamazoe, Solid State Ionics, 48, 207-212 (1991).
87. E. Bucher and W. Sitte, J. Electroceramics, 13, 779-784 (2004).
88. Y. M. Chiang, D. P. Birnie ΙΙΙ, W. D. Kingery:’Physical ceramics-Principles for ceramic science and engineering’, chapter 2, Wiley, USA, 110-111 (1997).
89. Z. Cheng, S. Zha, L. Aguilar, and M. Liu, Solid State Ionics, 176, 1921-1928 (2005).
90. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Solid State Ionics, 76, 259-271 (1995).
91. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., (9), 143, 2722-22729 (1996).
92. D. P. Karim and A. T. Aldred, Phys. Rev. B, (6), 20, 2255 (1979).
93. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B, 46, 6382 (1992).
94. H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, and H. Tagawa, Solid State Ionics, 132, 227-233 (2000).
95. K. T. Lee and A. Manthiram, J. Power Sources, In press (2005).
96. K. T. Lee and A. Manthiram, J. Electrochem. Soc., (1), 152, A197-A204 (2005).
97. H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao, and K. A. Hu, Solid State Ionics, 177, 901-906 (2006).
98. K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc., (145), 9, 3220-3227 (1998).
99. E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy, and J. C. Grenier, Solid State Sciences, 5, 973-981 (2003).
100. K. T. Lee and A. Manthiram, Chem. Mater., 18, 1621-1626 (2006).
101. L. Kindermann, D. das, D. Bahadur, R. Weib, H. Nickel, and K. Hilpert, J. Am. Ceram. Soc., 80, 909 (1992).
102. A. V. Virka, J. Chen, C. W. Yanner, and J. W. Kim, Solid State Ionics, 131, 189-198 (2000).
103. B. Wei, Z. Lü, S. Li, Y. Liu, K. Liu, and W. Su, Electrochemical and Solid-State Letters, (8), 8, A428-A431 (2005).
104. S. Kim, Y. L. Yang, A. J. Jacobson, and B. Abeles, Solid State Ionics, 106, 189-195 (1998).
105. C. Xia, W. Ranch, F. Chen, and M. Liu, Solid State Ionics, 149, 11-19 (2002).
106. Y. Liu, S. Zha, and M. Liu, Chem. ,Mater., 16, 3502-3506 (2004).