簡易檢索 / 詳目顯示

研究生: 陳柏誌
Chen, Bo-Jhih
論文名稱: 預偵測零量化係數以加速新穎的視訊編碼器
Speed Up of the State-of-the-Art Video Encoders by Early Detecting Zero-Quantized Coefficients
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 106
中文關鍵詞: 視訊編碼高效能視訊編碼標準離散餘弦轉換量化零量化餘弦轉換區塊零量化餘弦轉換係數殘餘值四元樹
外文關鍵詞: H.264/AVC, High Efficiency Video Coding (HEVC), discrete cosine transform (DCT), quantization (Q), zero-quantized DCT blocks (ZQBs), zero-quantized DCT coefficients (ZQDCTs), residual quad-tree (RQT) decision
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近二十年來,視訊編碼已經成為廣播與娛樂中一個關鍵的部分。視訊編碼標準發展過程中,如:MPEG-4, H.264/AVC 與 HEVC,最大成就在於提出了許多先進的壓縮技術。藉由這些視訊標準雖然大幅提昇了壓縮效能,然而相對的計算複雜度也因此劇幅增加。但是,視訊編碼器常有即時應用上的限制,例如:行動多媒體通訊的應用。因此,降低視訊編碼的運算複雜度並且同時盡可能維持編碼品質是必要的。

    為了解決上述之問題,各種用於降低運算複雜度的最佳化技術相繼提出。本論文將提出三種以預測為基礎的方法來提高先進視訊編碼的性能。首先,我們根據 H.264/AVC 中整數離散餘弦轉換(DCT)與量化(Q)運算的特性提出以區塊為主的偵測模型。在 DCT 與 Q 的計算之前,我們預先偵測零量化 DCT 區塊(ZQBs)。 然後,為了達到更高的偵測效能,我們再提出以係數為基礎的偵測方法以偵測零量化之DCT 係數(ZQDCTs), 並且執行不同類型的 DCT、Q、反量化(IQ)與反DCT(IDCT)運算。這類的事前偵測方法適用於避免不必要的 DCT 與 Q 運算,因此減少了視訊編碼時轉換與量化運算。相較於之前提出的演算法,本文所提出的偵測方法推導出偵測 ZQBs 與 ZQDCTs 的更有效條件,並且減少更多在 H.264/AVC 中的 DCT 與 Q 的運算。最後,我們還研究了HEVC 中所使用的可變大小轉換單元(TU),其大小包含有4 × 4、8 × 8、16 × 16 與32 × 32。我們提出了一個快速決策方法以加速殘餘值四元樹(RQT)決策。此方法以理論為基礎,推導出兩個分別用來降低 RQT 中 DCT 運算以及四元樹劃分之運算的條件。實驗結果顯示,我們所提出的方法能夠降低大量的 RQT 決策時所需的運算,同時維持與 HEVC 相近的編碼性能。

    In the past two decades, video coding has become a key component of broadcast and entertainment. A great achievement of the development of video coding standards, such as MPEG-4, H.264/AVC, and High Efficiency Video Coding (HEVC), introduce several advanced compression techniques. Although the compression efficiency is greatly improved by these video coding standards, the relative computational complexity is dramatically increased. Thus, these video codecs are constricted in real-time applications, such as mobile multimedia communications. Accordingly, it is necessary to reduce the computational complexity of video encoding while maintaining the coding performance.

    To address the problems mentioned above, various optimization techniques are presented to reduce the computational complexity. In this dissertation, three kinds of detection-based methods are proposed to improve the performance of the stat-of-the-art video coding standards. First, the integer discrete cosine transform (DCT) and quantization (Q) operations for H.264/AVC are studied, and the DCT block-based detection model is proposed to early detect zero-quantized DCT blocks (ZQBs) prior to DCT and Q computations. Furthermore, in order to achieve higher detection efficiency, the coefficient-based detection method is presented to detect zero-quantized DCT coefficients (ZQDCTs) for implementing various types of DCT, Q, inverse Q (IQ), and inverse DCT (IDCT) procedures. Such early detection techniques are preferable to avoid unnecessary DCT and Q procedures, and thus the computational complexity is reduced. As compared with the previously proposed algorithms, the proposed detection methods derive more efficient conditions to detect ZQBs and ZQDCTs, and therefore reduce more computations in H.264/AVC. Finally, the variable-size transform unit (TU), including 4 × 4, 8 × 8, 16 × 16, and 32 × 32, used in HEVC is studied, and a fast decision-making strategy is proposed to speed up the residual quad-tree (RQT) decision. Two conditions are theoretically derived to reduce the computational complexity of transform and split functions of RQT, respectively. The results indicate that the proposed method is capable of reducing a large amount of computation of the RQT decision while retaining the coding performance as similar as the original HEVC encoder.

    Abstract in Chinese i Abstract ii Acknowledgments iv Table of Contents v List of Tables viii List of Figures x 1 Introduction 1 1.1 Overview of Digital Video Coding 1 1.1.1 Emerging Video Coding Standards 1 1.2 State-of-the-Art Video Coding Standards 3 1.2.1 Overview of H.264/AVC 4 1.2.2 Overview of HEVC 7 1.3 Motivation 17 1.4 Literature Survey 18 1.4.1 Approaches for Detecting Zero-Quantized DCT Blocks 18 1.4.2 Approaches for Detecting Zero-Quantized DCT Coefficients 19 1.4.3 Approaches for Fast RQT Decision 21 1.5 Objectives 21 1.5.1 To Develop Ecient and Adaptive Detection Methods for ZQBs and ZQDCTs 21 1.5.2 To Design A Fast RQT Decision Method for HEVC 22 1.6 Dissertation Overview 23 2 A Gaussian Rate-Distortion Method for Detecting Zero-Quantized Blocks 24 2.1 Introduction 24 2.2 SAD-based Detection Approaches for Zero-Quantized Blocks 25 2.3 Proposed Gaussian Rate-Distortion ZQB Detection Method 28 2.3.1 Study of Gaussian Distribution Model 28 2.3.2 Proposed Gaussian Rate-Distortion ZQB Detection Method (GRDM) 30 2.4 Experimental Results 31 2.4.1 Video Quality and Bit Rate Evaluation 31 2.4.2 ZQB Detection Performance 35 2.4.3 Comparison of Computation Reduction 39 2.5 Conclusion 39 3 An Adaptive Selection Model for Detecting Zero-Quantized DCT Coefficients 42 3.1 Introduction 43 3.2 Related Detection Approaches for ZQDCT 43 3.3 Proposed Adaptive Selection Model for ZQDCT Prediction 45 3.3.1 Sucient Condition for ZQDCT Prediction 45 3.3.2 Implementation of Adaptive Selection Model (ASM) 48 3.3.3 Computational Complexity of Proposed ASM 49 3.4 Experimental Results 52 3.4.1 Comparisons of Encoding Performance 56 3.4.2 Comparisons of Detection Efficiency 58 3.4.3 Comparisons of Computation Reduction 61 3.5 Conclusion 68 4 An Early Termination Method for Residual Quadtree Decision in HEVC 70 4.1 Introduction 71 4.1.1 RQT Split Criterion 72 4.2 Related Works for Fast RQT Decision 75 4.3 Zero-Quantized-Based RQT Decision Method 76 4.3.1 Transform Skip Strategy of Residual Block 78 4.3.2 Split Termination Strategy of RQT 79 4.3.3 Summary of the ZQRQT Method 81 4.4 Experimental Results 82 4.4.1 Comparisons of Encoding Performance 82 4.4.2 Comparisons of Encoding Time Reduction 84 4.5 Conclusion 87 5 Conclusions and Future Works 93 5.1 Principal Contributions 93 5.1.1 ZQB Early Detection Method in H.264/AVC 93 5.1.2 ZQDCT Early Detection Method in H.264/AVC 94 5.1.3 Fast RQT Decision Approach in HEVC 94 5.2 Future Research Directions 95 5.2.1 Complexity Reduction for High Efficiency Video Coding 95 5.2.2 Develop ZQDCT Detection Methods in HEVC 95 References 96 Vitae 104 Publication List 105

    [1] “Xvid codec,” http://www.xvid.org/Xvid-Codec.2.0.html.
    [2] “Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s,” ISO/IEC 11172-1 (MPEG-1), 1991.
    [3] “Video codec for audiovisual services at p × 64 kbit/s,” ITU-T Rec. H. 261, Mar. 1993.
    [4] “Information tecchonology: Generic coding of moving pictures and associated audio information,” ISO/IEC 13818 (MPEG-2), 1995.
    [5] “Video coding for low bit rate communication,” ITU-T Rec. H. 263, 1996.
    [6] “Information tecchonology – Generic coding of audio-visual objects,” ISO/IEC 14496-2 (MPEG-4), 2001.
    [7] “Advanced video coding for generic audiovisual services,” ITU-T Rec. H. 264-ISO/IEC 14496-10 AVC, Nov. 2007.
    [8] H.264/AVC reference software 11.0, 2008. [Online]. Available: http://iphome.hhi.de/ suehring/tml/
    [9] “Joint Collaborative Team on Video Coding,” ISO/IEC and ITU-T, 2010.
    [10] HM reference software 5.0, 2011. [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/ svn HEVCSoftware/
    [11] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the H.264 video coder,” in Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on, vol. 3, May 2004, pp. iii – 177–80 vol.3.
    [12] K. Bharanitharan, B.-D. Liu, J.-F. Yang, and W.-C. Tsai, “A low complexity detection of discrete cross differences for fast h.264/avc intra prediction,” Multimedia, IEEE Transactions on, vol. 10, no. 7, pp. 1250 –1260, Nov. 2008.
    [13] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T VCEG-M33, 2001.
    [14] ——, “Improvements of the BD-PSNR model,” VCEG-AI11, Jul. 2008.
    [15] F. Bossen, “Common HM test conditions and software reference configurations,” JCTVCG1200, Jan. 2012.
    [16] B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, and T. Wiegand, “High Efficiency Video Coding (HEVC) text specification Working Draft 5,” JCTVC-G1103, Feb. 2012.
    [17] T. Eude, H. Cherifi, and R. Grisel, “Statistical distribution of DCT coefficients and their application to an adaptive compression algorithm,” in TENCON ’94. IEEE Region 10’s Ninth Annual International Conference. Theme: Frontiers of Computer Technology. Proceedings of 1994, Aug. 1994, pp. 427 –430 vol.1.
    [18] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the distribution of the DCT coefficients,” in Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on, vol. v, Apr. 1994, pp. V/365 –V/368 vol.5.
    [19] A. Fuldseth, G. Bjøntegaard, M. Sadafale, and M. VBudagavi, “Transform design for HEVC with 16 bit intermediate data representation,” JCTVC-E243, Mar. 2011.
    [20] B. Girod, E. Steinbach, and N. F¨arber, “Performance of the H.263 Video Compression Standard,” The Journal of VLSI Signal Processing, vol. 17, pp. 101–111, 1997.
    [21] C. Grecos and M. Yang, “Fast Mode Prediction for the Baseline and Main Profiles in the H.264 Video Coding Standard,” Multimedia, IEEE Transactions on, vol. 8, no. 6, pp. 1125 –1134, Dec. 2006.
    [22] W.-J. Han, J. Min, I.-K. Kim, E. Alshina, A. Alshin, T. Lee, J. Chen, V. Seregin, S. Lee, Y. M. Hong, M.-S. Cheon, N. Shlyakhov, K. McCann, T. Davies, and J.-H. Park, “Improved Video Compression Efficiency Through Flexible Unit Representation and Corresponding Extension of Coding Tools,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20, no. 12, pp. 1709 –1720, Dec. 2010.
    [23] H.-M. Hang and J.-J. Chen, “Source model for transform video coder and its application. I. Fundamental theory,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 7, no. 2, pp. 287 –298, Apr. 1997.
    [24] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen, “Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra frame coder,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 15, no. 3, pp. 378 – 401, Mar. 2005.
    [25] A. Jain, Fundamentals of digital image processing. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1989.
    [26] C. Kannangara, I. Richardson, M. Bystrom, J. Solera, Y. Zhao, A. MacLennan, and R. Cooney, “Low-complexity skip prediction for H.264 through Lagrangian cost estimation,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 16, no. 2, pp. 202 – 208, Feb. 2006.
    [27] E. Lam and J. Goodman, “A mathematical analysis of the dct coefficient distributions for images,” Image Processing, IEEE Transactions on, vol. 9, no. 10, pp. 1661 –1666, oct 2000.
    [28] Y.-M. Lee and Y. Lin, “Zero-Block Mode Decision Algorithm for H.264/AVC,” Image Processing, IEEE Transactions on, vol. 18, no. 3, pp. 524 –533, Mar. 2009.
    [29] B. Li, S. G. J., and J. Xu, “Comparison of Compression Performance of HEVC Working Draft 4 with AVC High Profile,” JCTVC-G399, Nov. 2011.
    [30] J. Li, W. Chen, M. Gabbouj, J. Takala, and H. Chen, “Prediction of discrete cosine transformed coefficients in resized pixel blocks,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, May 2011, pp. 1045 –1048.
    [31] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, “Adaptive deblocking filter,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 614 –619, Jul. 2003.
    [32] S. Ma, W. Gao, and Y. Lu, “Rate-distortion analysis for H.264/AVC video coding and its application to rate control,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 15, no. 12, pp. 1533 – 1544, Dec. 2005.
    [33] K. MaCann, B. Bross, W.-J. Han, S. Sekiguchi, and G. J. Sullivan, “High Efficiency Video Coding (HEVC) Test Model 5 (HM 5) Encoder Description,” JCTVC-G1102, Jan. 2012.
    [34] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity transform and quantization in H.264/AVC,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 598 – 603, Jul. 2003.
    [35] D. Marpe, H. Schwarz, S. Bosse, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman,
    T. Nguyen, S. Oudin, M. Siekmann, K. Suhring, M. Winken, and T. Wiegand, “Video Compression Using Nested Quadtree Structures, Leaf Merging, and Improved Techniques for Motion Representation and Entropy Coding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20, no. 12, pp. 1676 –1687, Dec. 2010.
    [36] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 620 – 636, Jul. 2003.
    [37] D. Marpe, T. Wiegand, and G. Sullivan, “The H.264/MPEG4 advanced video coding standard and its applications,” Communications Magazine, IEEE, vol. 44, no. 8, pp. 134 –143, Aug. 2006.
    [38] Y. H. Moon, G. Y. Kim, and J. H. Kim, “An improved early detection algorithm for all-zero blocks in H.264 video encoding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 15, no. 8, pp. 1053 – 1057, Aug. 2005.
    [39] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” Circuits and Systems Magazine, IEEE, vol. 4, no. 1, pp. 7 – 28, quarter 2004.
    [40] I.-M. Pao and M.-T. Sun, “Modeling DCT coefficients for fast video encoding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 9, no. 4, pp. 608 –616, Jun. 1999.
    [41] R. Reininger and J. Gibson, “Distributions of the Two-Dimensional DCT Coefficients for Images,” Communications, IEEE Transactions on, vol. 31, no. 6, pp. 835 – 839, Jun. 1983.
    [42] I. Richardson, H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley, 2003.
    [43] L. A. Sousa, “General method for eliminating redundant computations in video coding,” Electronics Letters, vol. 36, no. 4, pp. 306 –307, feb 2000.
    [44] Y. H. Tan, C. Yeo, H. L. Tan, and Z. Li, “On residual quad-tree coding in HEVC,” in Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on, Oct. 2011, pp. 1 –4.
    [45] S.-W. Teng, H.-M. Hang, and Y.-F. Chen, “Fast mode decision algorithm for Residual Quadtree coding in HEVC,” in Visual Communications and Image Processing (VCIP), 2011 IEEE, Nov. 2011, pp. 1 –4.
    [46] K. Ugur, K. Andersson, A. Fuldseth, G. Bjøntegaard, L. Endresen, J. Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, “High Performance, Low Complexity Video Coding and the Emerging HEVC Standard,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20, no. 12, pp. 1688 –1697, Dec. 2010.
    [47] H. Wang, S. Kwong, and C.-W. Kok, “Efficient prediction algorithm of integer DCT coefficients for H.264/AVC optimization,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 16, no. 4, pp. 547 – 552, Apr. 2006.
    [48] H. Wang and S. Kwong, “Hybrid Model to Detect Zero Quantized DCT Coefficients in H.264,” Multimedia, IEEE Transactions on, vol. 9, no. 4, pp. 728 –735, Jun. 2007.
    [49] ——, “Prediction of Zero Quantized DCT Coefficients in H.264/AVC Using Hadamard Transformed Information,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 18, no. 4, pp. 510 –515, Apr. 2008.
    [50] T. Wiegand and G. B., Multi Frame Motion-Compensated Prediction for Video Transmission. Springer, 2001.
    [51] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-constrained coder control and comparison of video coding standards,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 688 – 703, Jul. 2003.
    [52] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560 –576, Jul. 2003.
    [53] M. Wien, “Variable block-size transforms for H.264/AVC,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 604 – 613, Jul. 2003.
    [54] D. Wu, F. Pan, K. Lim, S. Wu, Z. Li, X. Lin, S. Rahardja, and C. Ko, “Fast intermode decision in H.264/AVC video coding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 15, no. 7, pp. 953 – 958, Jul. 2005.
    [55] J. Xie and L.-T. Chia, “Study on the distribution of DCT residues and its application to R-D analysis of video coding,” J. Vis. Comun. Image Represent., vol. 19, no. 7, pp. 411–425, Oct. 2008.
    [56] Z. Xie, Y. Liu, J. Liu, and T. Yang, “A General Method for Detecting All-Zero Blocks Prior to DCT and Quantization,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 2, pp. 237 –241, Feb. 2007.
    [57] A. C. Yu, “Efficient block-size selection algorithm for inter-frame coding in H.264/MPEG-4 AVC,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’04), vol. 3, 2004, pp. iii–169–72.
    [58] H. Zeng, C. Cai, and K.-K. Ma, “Fast Mode Decision for H.264/AVC Based on Macroblock Motion Activity,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 19, no. 4, pp. 491 –499, Apr. 2009.
    [59] M. Zhang, T. Zhou, and W. Wang, “Adaptive Method for Early Detecting Zero Quantized DCT Coefficients in H.264/AVC Video Encoding,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 19, no. 1, pp. 103 –107, Jan. 2009.
    [60] T. Zhou, M. Zhang, and Z. Xiong, “Generalised Gaussian distribution to early detect zero quantised discrete cosine transform coefficients in H.264/AVC video encoding,” Image Processing, IET, vol. 4, no. 6, pp. 473 –485, Dec. 2010.

    下載圖示 校內:2019-01-01公開
    校外:2019-01-01公開
    QR CODE