| 研究生: |
林奕伸 Lin, Yet-Sen |
|---|---|
| 論文名稱: |
發展一個數值方法計算全速域流場 A numerical method for solving all speed flow |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 震波-邊界層交互作用 、沉浸邊界法 、二階基本前處理法 、全速域流場 、斜震波 |
| 外文關鍵詞: | second order primitive preconditioner, shock-boundary layer interaction, oblique shock, immersed boundary method, all speed flow |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究目的是發展一個數值方法來計算全速域流場。此數值方法使用的統御方程式為非守恆型態的尤拉方程式或可壓縮那維爾-史托克斯方程式。在計算過程中加入二階基本前處理法(Second order primitive preconditioner)修正壓力項,其步驟為先計算顯性解,再以隱性修正法對顯性解作修正。並且配合沉浸邊界法(Immersed boundary method)來計算流場中之固定物體受到流體所施加的力,以及求解整個流場之各種物理量。
在物理問題方面,本文選取了幾個不可壓縮流與可壓縮流問題做計算,共計有: 一維震波管、二維斜震波、二維震波-邊界層交互作用、二維空穴流及二維流體流經圓柱等。本文以上述的算則求解這幾種物理問題,再比對解析解或前人的研究結果,以確認本數值方法的準確性,並對本數值方法的優缺點做分析。
A numerical method is developed to compute all speed flows. In this research, the govening equations used in this method are nonconservative
Euler Equations or compressible Navier-Stokes Equations. The second order primitive preconditioner is included correct the pressure field in the calculated process. Its steps are calculating explicit solutions first, and than correcting the explicit solutions by an implicit correction method. The immersed boundary method is also used to simulate the fluid-particles interaction problems.
On the physics problems, some incompressible and compressible problems are chosen to validate the proposed method . There are one dimensional shock tube, two dimensional oblique shock wave, two dimensional shock-boundary-layer interaction, two dimensional cavity flow, and two dimensional flow over cylinder. In order to track the accuracy of the scheme, we solve those problems by the scheme and compare the results with exact solutions or others’ results. We also analyze the advantages and the faults about the scheme.
【1】R. S. Hirsh, “Higher Order Accurate Difference Solutions of
Fluid Mechanics Problems by a Compact Differencing Technique ,”
Journal of Computational Physics, Vol.19, pp.90~109, (1975)
【2】J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Vol.7, pp.147~163, (1984)
【3】R. I. Issa, “Solution of the Implicity Discretised Fluid Flow Equations by Operator-Splitting,” Journal of Computational Physics, Vol.62, pp.40~65, (1985)
【4】R. I. Issa, A. D. Gosman and A. P. Watkins, “The Computation of Compressible and Incompressible Recirculating Flows by a Non-
iterative Implicit Scheme,” Journal of Computational Physics, Vol.62,
pp.66~82, (1986)
【5】A. J. Chorin, “A Numerical Method for solving Incompressible Viscous Flow Problem,” Journal of Computational Physics, Vol.2, pp.12~26, (1967)
【6】D. Pan and S. Chakravarthy, “Unified Formulation for Incompressible Flows,” AIAA Paper pp.89~122, (1989)
【7】E. Toro, “Riemann Solvers and Numerical Methods for Fluid Dynamics,” 2nd Edition, Springer Berlin, (1999)
【8】R. I. Issa and MH. Javareshkian, “Pressure-based compressible calculation method utilizing total variation diminishing schemes,” AIAA Journal Vol.36-9 pp.1652~1657, (1998)
【9】F. Moukalled and M. Darwash, “A High-Resolution Pressured
-Based Algorithm for Fluid Flow at All Speeds,” Journal of Computational Physics, Vol.168, pp.101~133, (2001)
【10】Feng Xiao, “Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow,” Journal of Computational Physics, Vol.195, pp.629~654, (2004)
【11】S. Y. Kadioglu, M. Sussman, S. Osher, J. P. Wright and M. Kang, “A second order primitive preconditioner for solving all speed multi-
-phase flow,” Journal of Computational Physics, Vol.209, pp.477~503, (2005)
【12】C. S. Peskin, “Numerical Analysis of Blood Flow in the Heart,” Journal of Computational Physics, Vol.25, pp.220~252, (1977)
【13】Z.-G. Feng, Efstathios and E. Michaelides, “The immersed boundary-Lattice Boltzmann method for solving fluid-particles interaction problems,” Journal of Computational Physics, Vol.195, pp.602~628, (2004)
【14】A. L. F. Lima E Silva, A. Silveira-Neto and J. J. R. Damasceno, “Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method,” Journal of Computational Physics, Vol.189, pp.351~370, (2003)
【15】E. L. Houghton and P. W. Carpenter, “Aerodynamics for Engineering students,” 4th Edition, Edward Arnold, pp.390~398, (1993)
【16】吳村木,“以有限體積法探討流經圓柱渦漩曳放的壓抑現象,”成功大學航空太空工程研究所博士論文,(1993)
【17】林文冠,“翼剖面流場於高攻角下之數值研究,”成功大學航空太空工程研究所碩士論文,(2000)