簡易檢索 / 詳目顯示

研究生: 楊麒
Yang, Chi
論文名稱: 鋼纖維與超高性能混凝土間拉拔行為與界面應力模擬分析
Numerical analysis of pullout behavior and interfacial stress between steel fiber and ultra-high performance concrete
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 戴毓修
Tai, Yuh-Shiou
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 207
中文關鍵詞: 有限元素分析單根纖維拉拔超高性能混凝土
外文關鍵詞: finite element analysis, single fiber pullout, ultra-high performance concrete, equivalent bond strength
相關次數: 點閱:100下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超高性能混凝土(ultra-high performance concrete,UHPC)具備高力學性能、高韌性、高耐久性,可被運用在抗爆及抗衝擊的結構物系統或高腐蝕性的環境。在超高性能混凝土中加入鋼纖維可有效提升混凝土整體工作性,然而當混凝土開裂後,裂縫發展的過程中鋼纖維和混凝土間會產生握裹滑脫(debond)的情況,而使鋼纖維的力學特性無法發揮,良好的界面黏結力可發揮兩者的優點及性能,因此為了提升超高性能混凝土與鋼纖維間的界面黏結強度(bond strength),兩者的介面特性需要透過纖維拉拔試驗被更深入的探討。

    本論文以有限元素軟體Ls-Dyna模擬直纖維、弓形纖維、螺旋纖維在超高性能混凝土中的拉拔行為,首先針對混凝土塑性損傷模型提出校正步驟,以準確模擬超高性能混凝土在拉拔過程中的受力行為,並將拉拔試驗模擬結果理論模型以及實驗結果做比較以驗證分析的可靠性。在本論文中探討纖維在各種不同狀況下對拉拔行為的影響,包括不同的埋置角度、基材強度、纖維直徑、弓形纖維端勾幾何以及螺旋纖維斷面幾何,探討理論模型並做出適當的修正。

    研究結果顯示,直徑0.38 mm弓形纖維的等效黏結強度為37 MPa約是0.2 mm直纖維的三倍(10.6 MPa),且為直徑0.38 mm直纖維的五倍(7.2 MPa),螺旋纖維則為 43.3 Mpa。纖維埋置於超高性能混凝土的拉拔力將隨埋置角度的增加而上升;混凝土基材強度提高,將使纖維與混凝土間的黏結強度增強,本論文亦針對直纖維在不同混凝土強度中等效黏結強度的變化,回歸一方程式以預測混凝土強度與等效黏結強度之間的關係;而弓形纖維的端勾幾何對纖維的拉拔有決定性影響,透過模擬不同端勾長度比與拉拔力、等效黏結強度間的關係,結論出當弓形纖維第一直線段與第二直線段比值為4.2時最符合經濟效應;螺旋纖維的斷面幾何對其拉拔行為影響巨大,正方形斷面纖維的拉拔性質優於三角形及矩形斷面;矩形斷面長寬比越小,等效黏結強度越大。

    Ultra-high performance concrete (UHPC) is widely used in structures subjected to impact and blast loading, due to its high compressive strength, superior ductility and extraordinary durability than ordinary concrete. It can effectively improve the workability of ultra-high performance concrete by adding steel fibers in to UHPC. However, the propagation of crack would cause the interface of concrete and steel to debond. In order to improve the interfacial bond strength, it is important to make a further investigation over the characteristics of the interface of ultra-high performance concrete and steel fiber.

    In the thesis, finite element models were developed to simulate the pullout behavior of smooth fiber, hooked-end fiber, and twisted fiber from the ultra-high performance concrete by finite element analysis software Ls-Dyna. At the beginning, we modified the concrete damage model in order to simulate the properties of ultra-high performance concrete in the single fiber pullout experiment more accurately. Then we compare the result of simulate analysis with the experiment data to ensure the reliability of the simulation. We also investigate the influence of the fiber inclined angle, compressive strength of concrete, diameter of steel fiber, geometry of hooked-end and the cross section of twisted fiber to the pullout behavior of steel fiber.

    The report shows that the equivalent bond strength of hooked-end fiber is 37 MPa, which is three times of the equivalent bond strength of smooth fiber. Furthermore, the equivalent bond strength of twisted fiber is 43.3 MPa is about four times of the bond strength of the smooth fiber. Also, the pullout load would increase with an increase in the angle of fiber inclination. In the thesis, we also proposed an equation to investigate the relationship between compressive strength of concrete and the equivalent bond strength. Considering the influence of geometries of hooked end, we concluded that the ratio of the 1st and 2nd straight section equals to 4.2 is the most effective value to have a better pullout response of hooked end steel fiber. And the equivalent bond strength of twisted fiber with triangular cross section is better than that of square and rectangular.

    摘要 I 目錄 XI 圖目錄 XV 表目錄 XXII 符號表 XXIV 第1章緒論 1 1.1研究動機與目的 1 1.2文獻回顧 3 1.2.1鋼纖維混凝土拉拔行為 6 1.2.2有限元素法模擬鋼纖維混凝土 9 1.3研究方法與目的 11 1.4論文架構 12 第2章鋼纖維拉拔行為之分析 14 2.1光滑直纖維拉拔理論模型 17 2.2 具埋置傾角的光滑直纖維拉拔理論模型 25 2.3弓形纖維拉拔試驗 30 2.3.1 弓形纖維拉拔力理論模型 30 2.3.2弓形纖維拉拔力-位移理論模型 33 2.4具埋置傾角的弓形纖維拉拔理論模型 39 2.5螺旋纖維拉拔理論模型 45 2.6纖維特徵效益比(FIER) 56 第3章材料組成率 58 3.1混凝土力學行為 58 3.1.2混凝土破壞準則 60 3.2 混凝土損傷模型理論基礎 63 3.2.2 K&C混凝土模型的破壞與損傷 64 3.2.2.1混凝土強度子午面 64 3.2.2.2混凝土 67 3.2.3狀態方程(EOS) 69 3.3 混凝土損傷模型材料參數 70 3.3.1破壞面參數生成 71 3.3.2抗拉強度參數生成 73 3.3.3狀態方程式(EOS)參數生成 73 3.4 K&C混凝土塑性損傷模型自動生成參數的校正 78 3.4.1K&C混凝土材料測試模型描述 78 3.4.2 K&C材料參數測試與校正方法 80 3.4.3抗壓強度194 MPa混凝土材料參數校正 100 3.5鋼材料力學行為 102 第4章纖維拉拔試驗數值模擬分析 104 4.1 纖維拉拔試驗模型概述 104 4.1.1纖維拉拔試驗模型幾何描述 104 4.1.2直纖維拉拔模型幾何 104 4.1.3弓形纖維拉拔模型幾何 105 4.1.4螺旋纖維拉拔模型幾何 106 4.2邊界以及載重條件 107 4.3網格切割及數值算法 108 4.4接觸設定 110 4.5材料性質 111 4.6其他參數設定 111 第5章纖維拉拔試驗分析結果 116 5.1光滑直纖維拉拔模擬結果 116 5.1.1光滑直纖維拉拔力-位移關係 116 5.1.2直纖維黏結剪應力與等效黏結強度 118 5.1.3直纖維拉拔理論模型探討 122 5.1.4直纖維埋置角度 129 5.1.5纖維直徑對拉拔行為的影響 134 5.1.6混凝土基材強度對直纖維拉拔的影響 137 5.1.7直纖維拉拔模擬小結 142 5.2弓形纖維拉拔模擬結果 143 5.2.1弓形纖維拉拔力-位移關係 143 5.2.2弓形纖維拉拔理論模型探討 145 5.2.3弓形纖維黏結剪應力與等效黏結強度 147 5.2.4弓形纖維埋置傾斜角度 148 5.2.5弓形纖維的端勾貢獻 151 5.2.6弓形纖維的塑性應變 158 5.2.7弓形纖維的端勾幾何 161 5.2.7.1弓形纖維端勾角度 162 5.2.7.2弓形纖維端勾長度比 166 5.2.7弓形纖維拉拔模擬小結 173 5.3螺旋纖維拉拔模擬結果 174 5.3.1螺旋纖維拉拔力-位移關係 174 5.3.2螺旋纖維黏結剪應力及等效黏結強度 176 5.2.3螺旋纖維應力轉換區與混凝土軟化區 177 5.3.4螺旋纖維螺距對拉拔力學的影響 179 5.3.5混凝土基材強度對螺旋纖維拉拔的影響 182 5.3.6 螺旋的斷面幾何 185 5.3.6.1 螺旋纖維斷面形狀 185 5.3.6.2正方形螺旋纖維尺寸對拉拔行為的影響 189 5.3.6.3矩形螺旋纖維長寬比 192 5.3.7螺旋纖維拉拔模擬小結 199 第6章結論與建議 200 6.1結論 200 6.2未來研究方向與建議。 202 參考文獻 203

    [1] Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., & Whittaker, A. S. (2009). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs.Engineering Structures, 31(9), 2060-2069.
    [2] Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of evelopment. Cement and Concrete Composites, 19(2), 107-122.
    [3] Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34(10), 1919-1925.
    [4] Li, V. C., Wang, Y., & Backer, S. (1987, January). Effect of fiber-matrix bond strength on the crack resistance of synthetic fiber reinforced cementitious composites. In MRS Proceedings (Vol. 114, p. 167). Cambridge University Press
    [5] Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713-2722.
    [6] Zheng, Z., & Feldman, D. (1995). Synthetic fibre-reinforced concrete. Progress in Polymer Science, 20(2), 185-210.
    [7] Taha, M. M. R., & Shrive, N. G. (2001). Enhancing fracture toughness of high-performance carbon fiber cement composites. ACI materials journal, 98(2).
    [8] Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber pullout and bond slip. I: Analytical study. Journal of Structural Engineering,117(9), 2769-2790.
    [9] Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber pullout and bond slip. II: Experimental Validation. Journal of Structural Engineering,117(9), 2769-2790.
    [10] Ayub, T., Shafiq, N., & Nurudinn, M. F. (2014, August). Analytical Prediction of the Mechanical Properties of High Performance PVA Fiber Reinforced Concrete. In Applied Mechanics and Materials (Vol. 567, pp. 345-350).
    [11] Kanda, T., & Li, V. C. (1998). Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. Journal of materials in civil engineering, 10(1), 5-13.
    [12] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1), 3-9.
    [13] Bentur, A., Mindess, S., & Diamond, S. (1985). Pull-out processes in steel fibre reinforced cement. International Journal of Cement Composites and Lightweight Concrete, 7(1), 29-37.
    [14] Shannag, M. J., Brincker, R., & Hansen, W. (1997). Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, 27(6), 925-936.
    [15] Holschemacher, K., Mueller, T., & Ribakov, Y. (2010). Effect of steel fibres on mechanical properties of high-strength concrete. Materials & Design, 31(5), 2604-2615.
    [16] Markovic, I. (2006). High-performance hybrid-fibre concrete: development and utilisation. IOS Press.
    [17] Lin, W. J. V., & Quek, S. T. TENSILE BEHAVIOR OF TWISTED STEEL FIBER REINFORCED CEMENTITIOUS COMPOSITE.
    [18] Bartos, P. (1981). Review paper: bond in fibre reinforced cements and concretes. International Journal of Cement composites and Lightweight concrete, 3(3), 159-177.
    [19] Naaman, A. E., Namur, G., Najm, H., & Alwan, J. (1989). Bond mechanisms in fiber reinforced cement-based composites (No. UMCE-89-9). MICHIGAN UNIV ANN ARBOR DEPT OF CIVIL ENGINEERING.
    [20] Li, V. C., Wang, Y., & Backer, S. (1990). Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix.Composites, 21(2), 132-140.
    [21] Alwan, J. M., Naaman, A. E., & Hansen, W. (1991). Pull-out work of steel fibers from cementitious composites: analytical investigation. Cement and Concrete Composites, 13(4), 247-255.
    [22] Leung, C. K., & Li, V. C. (1992). Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids, 40(6), 1333-1362.
    [23] Leung, C. K., & Ybanez, N. (1997). Pullout of inclined flexible fiber in cementitious composite. Journal of engineering mechanics, 123(3), 239-246.
    [24] Shannag, M. J., Brincker, R., & Hansen, W. (1996). Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout. ACI Materials journal, 93(5).
    [25] Robins, P., Austin, S., & Jones, P. (2002). Pull-out behaviour of hooked steel fibres. Materials and structures, 35(7), 434-442.
    [26] Sujivorakul, C,(2002) Development of High Performance Fiber Reinforced Cement Composites using Twisted Polygonal Steel Fibers. Ph.D. Thesis, 2002, University of Michigan
    [27] Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 1(3), 241-252.
    [28] Cunha, V. M., Barros, J., & Sena-Cruz, J. (2008, September). Bond-slip mechanisms of hooked-end steel fibers in self-compacting concrete. InMaterials Science Forum (Vol. 587, pp. 877-881).
    [29] Cunha, V. M., Barros, J. A., & Sena-Cruz, J. M. (2009). Pullout behavior of steel fibers in self-compacting concrete. Journal of Materials in Civil Engineering, 22(1), 1-9.
    [30] Kim, D. J., Naaman, A. E., & El-Tawil, S. (2009). High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers. International Journal of Concrete Structures and Materials, 3(2), 119-126.
    [31] Lee, Y., Kang, S. T., & Kim, J. K. (2010). Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Construction and Building Materials, 24(10), 2030-2041.
    [32] Wille, K., & Naaman, A. E. (2010). Bond stress-slip behavior of steel fibers embedded in ultra high performance concrete. In Proceedings of 18th European Conference on Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials (pp. 99-111).
    [33] Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4).
    [34] Laranjeira, F., Aguado, A., & Molins, C. (2010). Predicting the pullout response of inclined straight steel fibers. Materials and structures, 43(6), 875-895.
    [35] Laranjeira, F., Molins, C., & Aguado, A. (2010). Predicting the pullout response of inclined hooked steel fibers. Cement and Concrete Research, 40(10), 1471-1487.
    [36] Zīle, E., & Zīle, O. (2013). Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cement and Concrete Research, 44, 18-24.
    [37] Feng, J., Sun, W. W., Wang, X. M., & Shi, X. Y. (2014). Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete. Construction and Building Materials, 69, 403-410.
    [38] Xu, Z., Hao, H., & Li, H. N. (2012). Mesoscale modelling of fibre reinforced concrete material under compressive impact loading. Construction and Building Materials, 26(1), 274-288.
    [39] Xu, Z., Hao, H., & Li, H. N. (2012). Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Cement and Concrete Research, 42(11), 1475-1493.
    [40] Brannon, R. M., & Leelavanichkul, S. Survey of Four Damage Models for Concrete.
    [41] Broadhouse, B. J. (1995). The Winfrith concrete model in LS-DYNA3D. Report: SPD/D (95), 363.
    [42] Govindjee, S., Kay, G. J., & Simo, J. C. (1995). Anisotropic modelling and numerical simulation of brittle damage in concrete. International Journal for Numerical Methods in Engineering, 38(21), 3611-3633.
    [43] Yu, R., Spiesz, P., & Brouwers, H. J. H. (2013). Numerical simulation of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under high velocity impact of deformable projectile.
    [44] Fang, Q., & Zhang, J. (2013). Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials, 44, 118-132.
    [45] William, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete.
    [46] Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1994). A new concrete material model for DYNA3D, Karagozian & Case, Glendale, California, USA, TR-94-14.3.
    [47] Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1997). A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 19(9), 847-873.
    [48] Schwer, L. E., & Malvar, L. J. (2005). Simplified concrete modeling with* MAT_CONCRETE_DAMAGE_REL3. JRI LS-Dyna User Week, 49-60.
    [49] ARUP.(2009).Verification of the Karagozian and Case Material-Model for LS-DYNA 971 R3.
    [50] Magallanes, J. M., Wu, Y., Malvar, L. J., & Crawford, J. E. (2010, June). Recent improvements to release III of the K&C concrete model. In 11th international LS-DYNA Users conference (pp. 6-8). Livermore Software Technology Corporation Livermore, CA.
    [51] Crawford, J. E., Wu, Y., Magallanes, J. M., Choi, H. J., & Lan, S. (2012). Use and validation of the release II K&C concrete material model in LS-DYNA.Karagozian & Case, Glendale.
    [52] Magallanes, J. M., Karagozian & Case (K&C), Wu, Y. and Crawford, J. E.(2013) Modeling UHPC FRC Materials with the K&C Concrete Mode
    [53] Markovich, N., Kochavi, E., & Ben-Dor, G. (2011). An improved calibration of the concrete damage model. Finite Elements in Analysis and Design, 47(11), 1280-1290.
    [54] Xu, M., & Wille, K. (2015, February). Calibration of K&C Concrete Model for UHPC in LS-DYNA. In Advanced Materials Research (Vol. 1081, pp. 254-259).
    [55] Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 93(5).
    [56] Samani, A. K., & Attard, M. M. (2012). A stress–strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335-349.
    [57] Tsai, K. H., & Kim, K. S. (1996). The micromechanics of fiber pull-out. Journal of the Mechanics and Physics of Solids, 44(7), 1147-1177.
    [58] Antonio Caggiano , Guillermo Etse & Enzo Martinelli (2011) "Interface model for fracture behaviour of fiber-reinforced cementitious composites (FRCCs)", European Journal of Environmental and Civil Engineering, 15:9,1339-1359
    [59] Zhan, Y., & Meschke, G. (2014). Analytical Model for the Pullout Behavior of Straight and Hooked-End Steel Fibers. Journal of Engineering Mechanics,140(12).
    [60] Ellis, B. D., McDowell, D. L., & Zhou, M. (2014). Simulation of single fiber pullout response with account of fiber morphology. Cement and Concrete Composites, 48, 42-52.
    [61] LSTC. 2007. LS-DYNA Keyword User's Manual (Version 971), Livermore, CA: Livermore Software Technology Corporation (LSTC)
    [62] 戴毓修、胡宣德、陳世宏(2009),高強度混凝土三軸壓縮試驗技術與力學行為,陸軍軍官學校八十五週年校慶學術研討會論文集,鳳山
    [63] Hallquist J. Q.(2006).LS-DYNA theoretical manual. Livermore SoftwareTechnology Corporation (LSTC)
    [64] Schwer, L. (2010). An introduction to the Winfrith concrete model. Schwer Engineering & Consulting Services.
    [65] Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2006). Bond behavior of strand embedded in fiber reinforced cementitious composites. Strain, 50, 2.
    [66] Anders, J.(2014). Some guidelines for implicit analyses using LS-DYNA. DYNAmore Nordic.
    [67] Baltay, P., & Gjelsvik, A. (1990). Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering, 2(1), 46-49.
    [68] Vasudevan, A. K. (2012). Finite element analysis and experimental comparison of doubly reinforced concrete slabs subjected to blast loads (Doctoral dissertation, University of Missouri--Kansas City).
    [69] Fehling E. , Schmidt M.,Stürwald S.(2008).Ultra High Performance Concrete.Kassel,Germany
    [70] Mao, L., Barnett, S., Begg, D., Schleyer, G., & Wight, G. (2014). Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading. International Journal of Impact Engineering, 64, 91-100.
    [71] Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2013). Nonlinear finite elements for continua and structures. John Wiley & Sons.
    [72] joo Kim, D. (2009). Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers. ProQuest.
    [73] Chan, Y. W., & Chu, S. H. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research,34(7), 1167-1172.
    [74] Xu, B., Ju, J. W., & Shi, H. S. (2011). Micromechanical modeling of fracture energy for hooked-end steel fiber reinforced cementitious composites.International Journal of Damage Mechanics, 1056789510397072.
    [75] Abu-Lebdeh, T., Hamoush, S., Heard, W., & Zornig, B. (2011). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Construction and Building Materials, 25(1), 39-46.
    [76] Hamoush, S., Abu-Lebdeh, T., Cummins, T., & Zornig, B. (2010). Pullout characterizations of various steel fibers embedded in very high-strength concrete. American Journal of Engineering and Applied Sciences, 3(2), 418.
    [77] Abu-Lebdeh, T., Hamoush, S., & Zornig, B. (2010). Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete. American Journal of Engineering and Applied Sciences, 3(2), 454.
    [78] Pinchin, D. J., & Tabor, D. (1978). Interfacial contact pressure and frictional stress transfer in steel fibre cement. Testing and Test Methods of Fibre Cement Composites, 337-344.
    [79] ACI Committee, American Concrete Institute, & International Organization for Standardization. . Building code requirements for structural concrete (ACI 318-95) and commentary. American Concrete Institute.
    [80] Timoshinko, S." Strength. of materials". MacMillan, London, U.K.
    [81] Naaman, A. E., & Najm, H. (1991). Bond-slip mechanisms of steel fibers in concrete. ACI Materials Journal, 88(2).
    [82] HyperMesh 从入门到精通. 科学出版社, 2005.
    [83] HyperMesh & HyperView 应用技巧与高级实例. 机械工业出版社, 2012.
    [84] 基于 LS-DYNA 和 HyperWorks 的汽车安全仿真与分析. 清华大学出版社, 2011.
    [85] 赵筠, 廉慧珍, & 金建昌. (2013). 钢-混凝土复合的新模式——超高性能混凝土 (UHPC/UHPFRC) 之三: 收缩与裂缝, 耐高温性能, 渗透性与耐久性, 设计指南. 混凝土世界, (12), 60-71.
    [86] 龙靖华. (1999). 钢纤维与基体界面粘结强度的研究. 合肥工业大学学报, 22.
    [87] 杨萌. (2006). 钢纤维高强混凝土增强, 增韧机理及基于韧性的设计方法研究 [D](Doctoral dissertation, 大连: 大连理工大学).
    [88] 张亚芳, 陈沛然, 刘浩, & 王丽. (2014). 纤维直径对聚丙烯纤维混凝土单丝拉拔性能的影响. 武汉理工大学学报, 7, 017.
    [89] 陈沛然, 张亚芳, & 李根. (2013). 基体强度对钢纤维单丝拉拔性能的影响. 中山大学学报: 自然科学版, 52(6), 68-74.
    [90] 见鲸. (1994). 钢筋混凝土结构非线性有限元分析. 陕西科学技术出版社.

    下載圖示 校內:2021-01-20公開
    校外:2021-01-20公開
    QR CODE