| 研究生: |
楊麒 Yang, Chi |
|---|---|
| 論文名稱: |
鋼纖維與超高性能混凝土間拉拔行為與界面應力模擬分析 Numerical analysis of pullout behavior and interfacial stress between steel fiber and ultra-high performance concrete |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
戴毓修
Tai, Yuh-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 有限元素分析 、單根纖維拉拔 、超高性能混凝土 |
| 外文關鍵詞: | finite element analysis, single fiber pullout, ultra-high performance concrete, equivalent bond strength |
| 相關次數: | 點閱:100 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超高性能混凝土(ultra-high performance concrete,UHPC)具備高力學性能、高韌性、高耐久性,可被運用在抗爆及抗衝擊的結構物系統或高腐蝕性的環境。在超高性能混凝土中加入鋼纖維可有效提升混凝土整體工作性,然而當混凝土開裂後,裂縫發展的過程中鋼纖維和混凝土間會產生握裹滑脫(debond)的情況,而使鋼纖維的力學特性無法發揮,良好的界面黏結力可發揮兩者的優點及性能,因此為了提升超高性能混凝土與鋼纖維間的界面黏結強度(bond strength),兩者的介面特性需要透過纖維拉拔試驗被更深入的探討。
本論文以有限元素軟體Ls-Dyna模擬直纖維、弓形纖維、螺旋纖維在超高性能混凝土中的拉拔行為,首先針對混凝土塑性損傷模型提出校正步驟,以準確模擬超高性能混凝土在拉拔過程中的受力行為,並將拉拔試驗模擬結果理論模型以及實驗結果做比較以驗證分析的可靠性。在本論文中探討纖維在各種不同狀況下對拉拔行為的影響,包括不同的埋置角度、基材強度、纖維直徑、弓形纖維端勾幾何以及螺旋纖維斷面幾何,探討理論模型並做出適當的修正。
研究結果顯示,直徑0.38 mm弓形纖維的等效黏結強度為37 MPa約是0.2 mm直纖維的三倍(10.6 MPa),且為直徑0.38 mm直纖維的五倍(7.2 MPa),螺旋纖維則為 43.3 Mpa。纖維埋置於超高性能混凝土的拉拔力將隨埋置角度的增加而上升;混凝土基材強度提高,將使纖維與混凝土間的黏結強度增強,本論文亦針對直纖維在不同混凝土強度中等效黏結強度的變化,回歸一方程式以預測混凝土強度與等效黏結強度之間的關係;而弓形纖維的端勾幾何對纖維的拉拔有決定性影響,透過模擬不同端勾長度比與拉拔力、等效黏結強度間的關係,結論出當弓形纖維第一直線段與第二直線段比值為4.2時最符合經濟效應;螺旋纖維的斷面幾何對其拉拔行為影響巨大,正方形斷面纖維的拉拔性質優於三角形及矩形斷面;矩形斷面長寬比越小,等效黏結強度越大。
Ultra-high performance concrete (UHPC) is widely used in structures subjected to impact and blast loading, due to its high compressive strength, superior ductility and extraordinary durability than ordinary concrete. It can effectively improve the workability of ultra-high performance concrete by adding steel fibers in to UHPC. However, the propagation of crack would cause the interface of concrete and steel to debond. In order to improve the interfacial bond strength, it is important to make a further investigation over the characteristics of the interface of ultra-high performance concrete and steel fiber.
In the thesis, finite element models were developed to simulate the pullout behavior of smooth fiber, hooked-end fiber, and twisted fiber from the ultra-high performance concrete by finite element analysis software Ls-Dyna. At the beginning, we modified the concrete damage model in order to simulate the properties of ultra-high performance concrete in the single fiber pullout experiment more accurately. Then we compare the result of simulate analysis with the experiment data to ensure the reliability of the simulation. We also investigate the influence of the fiber inclined angle, compressive strength of concrete, diameter of steel fiber, geometry of hooked-end and the cross section of twisted fiber to the pullout behavior of steel fiber.
The report shows that the equivalent bond strength of hooked-end fiber is 37 MPa, which is three times of the equivalent bond strength of smooth fiber. Furthermore, the equivalent bond strength of twisted fiber is 43.3 MPa is about four times of the bond strength of the smooth fiber. Also, the pullout load would increase with an increase in the angle of fiber inclination. In the thesis, we also proposed an equation to investigate the relationship between compressive strength of concrete and the equivalent bond strength. Considering the influence of geometries of hooked end, we concluded that the ratio of the 1st and 2nd straight section equals to 4.2 is the most effective value to have a better pullout response of hooked end steel fiber. And the equivalent bond strength of twisted fiber with triangular cross section is better than that of square and rectangular.
[1] Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., & Whittaker, A. S. (2009). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs.Engineering Structures, 31(9), 2060-2069.
[2] Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of evelopment. Cement and Concrete Composites, 19(2), 107-122.
[3] Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34(10), 1919-1925.
[4] Li, V. C., Wang, Y., & Backer, S. (1987, January). Effect of fiber-matrix bond strength on the crack resistance of synthetic fiber reinforced cementitious composites. In MRS Proceedings (Vol. 114, p. 167). Cambridge University Press
[5] Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713-2722.
[6] Zheng, Z., & Feldman, D. (1995). Synthetic fibre-reinforced concrete. Progress in Polymer Science, 20(2), 185-210.
[7] Taha, M. M. R., & Shrive, N. G. (2001). Enhancing fracture toughness of high-performance carbon fiber cement composites. ACI materials journal, 98(2).
[8] Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber pullout and bond slip. I: Analytical study. Journal of Structural Engineering,117(9), 2769-2790.
[9] Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber pullout and bond slip. II: Experimental Validation. Journal of Structural Engineering,117(9), 2769-2790.
[10] Ayub, T., Shafiq, N., & Nurudinn, M. F. (2014, August). Analytical Prediction of the Mechanical Properties of High Performance PVA Fiber Reinforced Concrete. In Applied Mechanics and Materials (Vol. 567, pp. 345-350).
[11] Kanda, T., & Li, V. C. (1998). Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. Journal of materials in civil engineering, 10(1), 5-13.
[12] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1), 3-9.
[13] Bentur, A., Mindess, S., & Diamond, S. (1985). Pull-out processes in steel fibre reinforced cement. International Journal of Cement Composites and Lightweight Concrete, 7(1), 29-37.
[14] Shannag, M. J., Brincker, R., & Hansen, W. (1997). Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, 27(6), 925-936.
[15] Holschemacher, K., Mueller, T., & Ribakov, Y. (2010). Effect of steel fibres on mechanical properties of high-strength concrete. Materials & Design, 31(5), 2604-2615.
[16] Markovic, I. (2006). High-performance hybrid-fibre concrete: development and utilisation. IOS Press.
[17] Lin, W. J. V., & Quek, S. T. TENSILE BEHAVIOR OF TWISTED STEEL FIBER REINFORCED CEMENTITIOUS COMPOSITE.
[18] Bartos, P. (1981). Review paper: bond in fibre reinforced cements and concretes. International Journal of Cement composites and Lightweight concrete, 3(3), 159-177.
[19] Naaman, A. E., Namur, G., Najm, H., & Alwan, J. (1989). Bond mechanisms in fiber reinforced cement-based composites (No. UMCE-89-9). MICHIGAN UNIV ANN ARBOR DEPT OF CIVIL ENGINEERING.
[20] Li, V. C., Wang, Y., & Backer, S. (1990). Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix.Composites, 21(2), 132-140.
[21] Alwan, J. M., Naaman, A. E., & Hansen, W. (1991). Pull-out work of steel fibers from cementitious composites: analytical investigation. Cement and Concrete Composites, 13(4), 247-255.
[22] Leung, C. K., & Li, V. C. (1992). Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids, 40(6), 1333-1362.
[23] Leung, C. K., & Ybanez, N. (1997). Pullout of inclined flexible fiber in cementitious composite. Journal of engineering mechanics, 123(3), 239-246.
[24] Shannag, M. J., Brincker, R., & Hansen, W. (1996). Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout. ACI Materials journal, 93(5).
[25] Robins, P., Austin, S., & Jones, P. (2002). Pull-out behaviour of hooked steel fibres. Materials and structures, 35(7), 434-442.
[26] Sujivorakul, C,(2002) Development of High Performance Fiber Reinforced Cement Composites using Twisted Polygonal Steel Fibers. Ph.D. Thesis, 2002, University of Michigan
[27] Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 1(3), 241-252.
[28] Cunha, V. M., Barros, J., & Sena-Cruz, J. (2008, September). Bond-slip mechanisms of hooked-end steel fibers in self-compacting concrete. InMaterials Science Forum (Vol. 587, pp. 877-881).
[29] Cunha, V. M., Barros, J. A., & Sena-Cruz, J. M. (2009). Pullout behavior of steel fibers in self-compacting concrete. Journal of Materials in Civil Engineering, 22(1), 1-9.
[30] Kim, D. J., Naaman, A. E., & El-Tawil, S. (2009). High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers. International Journal of Concrete Structures and Materials, 3(2), 119-126.
[31] Lee, Y., Kang, S. T., & Kim, J. K. (2010). Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Construction and Building Materials, 24(10), 2030-2041.
[32] Wille, K., & Naaman, A. E. (2010). Bond stress-slip behavior of steel fibers embedded in ultra high performance concrete. In Proceedings of 18th European Conference on Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials (pp. 99-111).
[33] Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4).
[34] Laranjeira, F., Aguado, A., & Molins, C. (2010). Predicting the pullout response of inclined straight steel fibers. Materials and structures, 43(6), 875-895.
[35] Laranjeira, F., Molins, C., & Aguado, A. (2010). Predicting the pullout response of inclined hooked steel fibers. Cement and Concrete Research, 40(10), 1471-1487.
[36] Zīle, E., & Zīle, O. (2013). Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cement and Concrete Research, 44, 18-24.
[37] Feng, J., Sun, W. W., Wang, X. M., & Shi, X. Y. (2014). Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete. Construction and Building Materials, 69, 403-410.
[38] Xu, Z., Hao, H., & Li, H. N. (2012). Mesoscale modelling of fibre reinforced concrete material under compressive impact loading. Construction and Building Materials, 26(1), 274-288.
[39] Xu, Z., Hao, H., & Li, H. N. (2012). Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Cement and Concrete Research, 42(11), 1475-1493.
[40] Brannon, R. M., & Leelavanichkul, S. Survey of Four Damage Models for Concrete.
[41] Broadhouse, B. J. (1995). The Winfrith concrete model in LS-DYNA3D. Report: SPD/D (95), 363.
[42] Govindjee, S., Kay, G. J., & Simo, J. C. (1995). Anisotropic modelling and numerical simulation of brittle damage in concrete. International Journal for Numerical Methods in Engineering, 38(21), 3611-3633.
[43] Yu, R., Spiesz, P., & Brouwers, H. J. H. (2013). Numerical simulation of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under high velocity impact of deformable projectile.
[44] Fang, Q., & Zhang, J. (2013). Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials, 44, 118-132.
[45] William, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete.
[46] Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1994). A new concrete material model for DYNA3D, Karagozian & Case, Glendale, California, USA, TR-94-14.3.
[47] Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1997). A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 19(9), 847-873.
[48] Schwer, L. E., & Malvar, L. J. (2005). Simplified concrete modeling with* MAT_CONCRETE_DAMAGE_REL3. JRI LS-Dyna User Week, 49-60.
[49] ARUP.(2009).Verification of the Karagozian and Case Material-Model for LS-DYNA 971 R3.
[50] Magallanes, J. M., Wu, Y., Malvar, L. J., & Crawford, J. E. (2010, June). Recent improvements to release III of the K&C concrete model. In 11th international LS-DYNA Users conference (pp. 6-8). Livermore Software Technology Corporation Livermore, CA.
[51] Crawford, J. E., Wu, Y., Magallanes, J. M., Choi, H. J., & Lan, S. (2012). Use and validation of the release II K&C concrete material model in LS-DYNA.Karagozian & Case, Glendale.
[52] Magallanes, J. M., Karagozian & Case (K&C), Wu, Y. and Crawford, J. E.(2013) Modeling UHPC FRC Materials with the K&C Concrete Mode
[53] Markovich, N., Kochavi, E., & Ben-Dor, G. (2011). An improved calibration of the concrete damage model. Finite Elements in Analysis and Design, 47(11), 1280-1290.
[54] Xu, M., & Wille, K. (2015, February). Calibration of K&C Concrete Model for UHPC in LS-DYNA. In Advanced Materials Research (Vol. 1081, pp. 254-259).
[55] Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 93(5).
[56] Samani, A. K., & Attard, M. M. (2012). A stress–strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335-349.
[57] Tsai, K. H., & Kim, K. S. (1996). The micromechanics of fiber pull-out. Journal of the Mechanics and Physics of Solids, 44(7), 1147-1177.
[58] Antonio Caggiano , Guillermo Etse & Enzo Martinelli (2011) "Interface model for fracture behaviour of fiber-reinforced cementitious composites (FRCCs)", European Journal of Environmental and Civil Engineering, 15:9,1339-1359
[59] Zhan, Y., & Meschke, G. (2014). Analytical Model for the Pullout Behavior of Straight and Hooked-End Steel Fibers. Journal of Engineering Mechanics,140(12).
[60] Ellis, B. D., McDowell, D. L., & Zhou, M. (2014). Simulation of single fiber pullout response with account of fiber morphology. Cement and Concrete Composites, 48, 42-52.
[61] LSTC. 2007. LS-DYNA Keyword User's Manual (Version 971), Livermore, CA: Livermore Software Technology Corporation (LSTC)
[62] 戴毓修、胡宣德、陳世宏(2009),高強度混凝土三軸壓縮試驗技術與力學行為,陸軍軍官學校八十五週年校慶學術研討會論文集,鳳山
[63] Hallquist J. Q.(2006).LS-DYNA theoretical manual. Livermore SoftwareTechnology Corporation (LSTC)
[64] Schwer, L. (2010). An introduction to the Winfrith concrete model. Schwer Engineering & Consulting Services.
[65] Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2006). Bond behavior of strand embedded in fiber reinforced cementitious composites. Strain, 50, 2.
[66] Anders, J.(2014). Some guidelines for implicit analyses using LS-DYNA. DYNAmore Nordic.
[67] Baltay, P., & Gjelsvik, A. (1990). Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering, 2(1), 46-49.
[68] Vasudevan, A. K. (2012). Finite element analysis and experimental comparison of doubly reinforced concrete slabs subjected to blast loads (Doctoral dissertation, University of Missouri--Kansas City).
[69] Fehling E. , Schmidt M.,Stürwald S.(2008).Ultra High Performance Concrete.Kassel,Germany
[70] Mao, L., Barnett, S., Begg, D., Schleyer, G., & Wight, G. (2014). Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading. International Journal of Impact Engineering, 64, 91-100.
[71] Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2013). Nonlinear finite elements for continua and structures. John Wiley & Sons.
[72] joo Kim, D. (2009). Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers. ProQuest.
[73] Chan, Y. W., & Chu, S. H. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research,34(7), 1167-1172.
[74] Xu, B., Ju, J. W., & Shi, H. S. (2011). Micromechanical modeling of fracture energy for hooked-end steel fiber reinforced cementitious composites.International Journal of Damage Mechanics, 1056789510397072.
[75] Abu-Lebdeh, T., Hamoush, S., Heard, W., & Zornig, B. (2011). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Construction and Building Materials, 25(1), 39-46.
[76] Hamoush, S., Abu-Lebdeh, T., Cummins, T., & Zornig, B. (2010). Pullout characterizations of various steel fibers embedded in very high-strength concrete. American Journal of Engineering and Applied Sciences, 3(2), 418.
[77] Abu-Lebdeh, T., Hamoush, S., & Zornig, B. (2010). Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete. American Journal of Engineering and Applied Sciences, 3(2), 454.
[78] Pinchin, D. J., & Tabor, D. (1978). Interfacial contact pressure and frictional stress transfer in steel fibre cement. Testing and Test Methods of Fibre Cement Composites, 337-344.
[79] ACI Committee, American Concrete Institute, & International Organization for Standardization. . Building code requirements for structural concrete (ACI 318-95) and commentary. American Concrete Institute.
[80] Timoshinko, S." Strength. of materials". MacMillan, London, U.K.
[81] Naaman, A. E., & Najm, H. (1991). Bond-slip mechanisms of steel fibers in concrete. ACI Materials Journal, 88(2).
[82] HyperMesh 从入门到精通. 科学出版社, 2005.
[83] HyperMesh & HyperView 应用技巧与高级实例. 机械工业出版社, 2012.
[84] 基于 LS-DYNA 和 HyperWorks 的汽车安全仿真与分析. 清华大学出版社, 2011.
[85] 赵筠, 廉慧珍, & 金建昌. (2013). 钢-混凝土复合的新模式——超高性能混凝土 (UHPC/UHPFRC) 之三: 收缩与裂缝, 耐高温性能, 渗透性与耐久性, 设计指南. 混凝土世界, (12), 60-71.
[86] 龙靖华. (1999). 钢纤维与基体界面粘结强度的研究. 合肥工业大学学报, 22.
[87] 杨萌. (2006). 钢纤维高强混凝土增强, 增韧机理及基于韧性的设计方法研究 [D](Doctoral dissertation, 大连: 大连理工大学).
[88] 张亚芳, 陈沛然, 刘浩, & 王丽. (2014). 纤维直径对聚丙烯纤维混凝土单丝拉拔性能的影响. 武汉理工大学学报, 7, 017.
[89] 陈沛然, 张亚芳, & 李根. (2013). 基体强度对钢纤维单丝拉拔性能的影响. 中山大学学报: 自然科学版, 52(6), 68-74.
[90] 见鲸. (1994). 钢筋混凝土结构非线性有限元分析. 陕西科学技术出版社.