| 研究生: |
張鳳寶 Chang, Feng-Pao |
|---|---|
| 論文名稱: |
分子動力學模擬奈米碳管對氫的吸附及釋放行為 Hydrogen Adsorption/ Desorption from Carbon Nanotube Using Molecular Dynamic Simulations |
| 指導教授: |
翁政義
Weng, Cheng-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 分子動力學 、氫 、燃料電池 、奈米碳管 |
| 外文關鍵詞: | Hydrogen, Fuel Cell, Carbon Nanotube, Molecular Dynamics |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學探討奈米碳管對氫氣的儲存與釋放,氫氣間的作用勢能採用Exponential-6 potential,而氫分子和碳原子之間的相互作用力以Lennard-Jones potential來描述,由於氫分子間以及氫粉子與碳原子間的作用力是屬於長程的凡德瓦爾力。
影響儲存量及釋放量的參數有溫度、壓力、管徑、奈米碳管幾何陣列型式、VDW距離,當單層奈米碳管以排成方形陣列的型式,同時VDW 距離在9Å時,系統有最高的儲存及釋放量。
We present a detailed investigation of the Hydrogen adsorption and desorption from Carbon Nanotube using Molecular Dynamics. Hydrogen has been modeled with the Exponential-6 potential. And the interaction between a hydrogen molecule with a carbom atoms is modeled by the Lennard-Jones potential. Because the long-distance van der Waals forces amoung hydrogen molecules and between the carbon atoms and the hydrogen molecules.
The amount of hydrogen adsorption and desorption influence with temperature, pressure, radius of SWCNT, geometry of the arrays of SWCNTs, and VDW distance. When the SWCNTs form square array and VDW distance of 9Å give the highest gravimetric storage adsorption and desorption capacity.
1. Louis Schlapbach, and Andreas Zuttel, “Hydrogen-store materials for mobile applications.”, Nature Vol. 414 ( 2001 ) 353-358.
2. Louis Schlapbach, “Hydrogen as a Fuel and Its Storage for Mobility and Transport”, MRS Bulletin ( 2002 ) 675-679.
3. the U.S. Department of Energy ( DOE ) by the National Renewable Energy Laboratory, a DOE national lab., “Hydrogen The Fuel for The Future”, ( 1995 ) DOE/GO-10095-099.
4. S. Orimo , A. Zuttel , L. Schlapbach , G. Majer , T. Fukunaga , H. Fujii, “Hydrogen interaction with carbon nanostructures: current situation andfuture prospects”, Journal of Alloys and Compounds 356–357 ( 2003 ) 716–719.
5. M. R. Pederson and J. Q. Brooghton, “Nanocapillarity in fullerene tubes”, Phys. Rev. Leet. Vol.69 ( 1992 ) 2689-2692.
6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, “Storrage of hydrogen in single-walled carbon nanotubes”, Nature Vol. 386 ( 1997 ) 377-379.
7. A. C. Dillon et al., Proceedings of the 2000 U.S. DOE Hydrogen Proqram.
8. Y. Ye, C. C. Ahn, C. witham, and B. Fultz, “Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes”, Appl. Phys. Lett. Vol. 74-16 ( 1999 ) 2307-2309.
9. Liu C., and Fan Y. Y., ” Hydrogen Store in Single-Walled Carbon Nanotubes at Room Temperature”, Science Vol. 286-5 ( 1999 ) 1127-1129.
10. Hongwei Zhu, Anyuan Cao, Xuesong Li, Cailu Xu, Zongqiang Mao, Dianbo Ruan, Ji Liang, and Dehai Wu, ” Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature”, Applied Surface Science Vol. 178 ( 2001 ) 50-55.
11. Shigeo Maruyama and Tatsuto Kimuru, “Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotubes”, ASME International Mechanical Engineering Congress and Exhibit, Orland, Nonember 5-11 ( 2000 ).
12. Vahan V. Simonyan, Phong Diep, and J. Karl Johnson,” Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes”, Journal of Chemical Physics Vol.111 No.21 ( 1999 ) 9778-9783.
13. Yuchen Ma, Yueyuan Xia, Mingwen Zhao, Ruijin Wang, and Liangmo Mei, ”Effective hydrogen storage in single-wall carbon nanotubes”, Phys. Rev. B Vol. 63 ( 2001 ) 115422.
14. Yuchen Ma , Yueyuan Xia , Mingwen Zhao , and Minju Ying, ”Structures of hydrogen molecules in single-wall carbon nanotubes”, Chemical Physics Letters Vol. 357 ( 2002 ) 97-102.
15. Yuchen Ma , Yueyuan Xia , Mingwen Zhao , and Minju Ying, ” Hydrogen storage capacity in single-wall carbon nanotubes”, Phys. Rev. B Vol. 65 ( 2002 ) 155430.
16. S. Iijima,” Helical microtubules of graphitic carbon”, Nature Vol. 354 ( 1991 ) 56-58.
17. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes , Imperial College Press , ( 1998 ).
18. Jung M, Eun KY, Lee JK, Baik YJ, Lee KR, and Park JW, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Matericals Vol. 10 1235-1240.
19. Lim, S. C., Jeong, H.J., Park, Y.S., Bae, D.S., Choi, Y.C., Shin, Y.M., Kim, W.S., An, K.H., Lee, Y.H., Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions, Journal of Vacuum Science & Technology A Vol. 19 ( 2001 ) 1786-1789.
20. Yu J, Zhang Q, Ahn J, Yoon SF, Rusli, Li YJ, Gan B, Chew K, Tan KH, Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition, Diamond and Related Matericals Vol. 10 ( 2001) 2157-2160.
21. Matsushita A, Nagai M, Yamakawa K, Hiramatsu M, Sakai A, Hori M, Goto T, Zaima S, Growth of carbon nanotubes by microwave-excited non-equilibrium atmospheric-pressure plasma, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers Vol. 43 ( 2004 ) 424-425.
22. Smalley R. E. el., “Crystalline Ropes of Metallic Carbon Nanotubes”, Science Vol. 273 ( 1996 ) 483-487.
23. Qinyu Wang, and J.Karl Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption”, J. Phys. Chem. Bvol. 103 ( 1999 ) 4809-4813.
24. M. P. Allen et al., Computer Simulation in Chemical Physics, SeriesC: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, ( 1992 ).
25. M. Meyer et al., Computer Simulation in Material Science, Series E:Applied Sciences Vol. 205, Kluwer Academic , Dordrecht, ( 1991 ).
26. S. Erkoc, "Annual Reviews of Computational IX", World Scientific Publishing Company, Singapore, 1-103 ( 2001 ).
27. H. Rafii-Tabar, "Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations", Physics Reports Vol. 325 239-310 ( 2000 ).
28. R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London , ( 1997 ).
29. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London , ( 1987 ).
30. P. L. Huyskens et al., Intermolecular Forces , Springer-Verlag, Berlin , ( 1991 ).
31. M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces between Molecules, Oxford University Press, London, (1986).
32. Seung Mi Lee , Ki Soo Park, and Young Chul Choi,” Hydrogen Adsorption and Storage in Carbon Nanotubes”, Synthetic Metals Vol. 113 ( 2000 ) 209–216.
33. D. E. Williams, “Nonbonded Potential Parameters Derived from Crystalline Hydrocarbons”, the Journal of Chemical Physics Vol. 47 ( 1967 ) 4680-4684.
34. K.A. Williams , and P.C. Eklund,” Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes”, Chemical Physics Letters Vol. 320 ( 2000 ) 352–358.
35. I. F. Silvera, and V. V. Goldman,” The isotropic intermolecular potential for H2 and D2 in the solid and gas phases”, Journal of Chemical Physics Vol. 69 ( 1978 ) 4209-4213.
36. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley &Sons, Inc., New York, ( 1992 ).
37. J. M. Goodfellow et al., Molecular Dynamics, CRC Press, Boston, ( 1990 ).
38. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, ( 1997 ).
39. D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, ( 1990 ).
40. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, ( 1991 ).
41. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, ( 1996 ).
42. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London , ( 1987 ).