簡易檢索 / 詳目顯示

研究生: 張鳳寶
Chang, Feng-Pao
論文名稱: 分子動力學模擬奈米碳管對氫的吸附及釋放行為
Hydrogen Adsorption/ Desorption from Carbon Nanotube Using Molecular Dynamic Simulations
指導教授: 翁政義
Weng, Cheng-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 109
中文關鍵詞: 分子動力學燃料電池奈米碳管
外文關鍵詞: Hydrogen, Fuel Cell, Carbon Nanotube, Molecular Dynamics
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以分子動力學探討奈米碳管對氫氣的儲存與釋放,氫氣間的作用勢能採用Exponential-6 potential,而氫分子和碳原子之間的相互作用力以Lennard-Jones potential來描述,由於氫分子間以及氫粉子與碳原子間的作用力是屬於長程的凡德瓦爾力。

      影響儲存量及釋放量的參數有溫度、壓力、管徑、奈米碳管幾何陣列型式、VDW距離,當單層奈米碳管以排成方形陣列的型式,同時VDW 距離在9Å時,系統有最高的儲存及釋放量。

      We present a detailed investigation of the Hydrogen adsorption and desorption from Carbon Nanotube using Molecular Dynamics. Hydrogen has been modeled with the Exponential-6 potential. And the interaction between a hydrogen molecule with a carbom atoms is modeled by the Lennard-Jones potential. Because the long-distance van der Waals forces amoung hydrogen molecules and between the carbon atoms and the hydrogen molecules.

      The amount of hydrogen adsorption and desorption influence with temperature, pressure, radius of SWCNT, geometry of the arrays of SWCNTs, and VDW distance. When the SWCNTs form square array and VDW distance of 9Å give the highest gravimetric storage adsorption and desorption capacity.

    中文摘要 III Abstract IV 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 文獻回顧 5 1-4 本文架構 7 第二章 奈米碳管及氫氣的介紹 9 2-1 奈米碳管的介紹 9 2-1-1 奈米碳管的發展及應用 9 2-1-2 奈米碳管結構 10 2-1-3 奈米碳管的unit cell 11 2-1-4常見的奈米碳管製作方法 12 2-2 氫氣 18 2-2-1氫氣的介紹 18 2-2-2目前氫氣的儲存方法 20 第三章 分子動力學理論 23 3-1 物理模型 23 3-2 勢能函數 23 3-2-1 H2-H2間的作用勢能函數 25 3-2-2 C-H2間的作用勢能函數 25 3-3 系統壓力的統計與控制 29 3-4 模擬流程圖 29 第四章 分子動力學數值模擬方法 31 4-1 模擬參數與無因次化 31 4-2 邊界條件 33 4-3 初始條件 35 4-3-1速度修正 35 4-3-2溫度修正 35 4-4運動方程式 37 4-4-1 Leap-Frog方法 38 4-4-2 Verlet方法 39 4-4-3 Gear五階預測修正法 40 4-5 截斷半徑法 45 第五章 模擬結果分析與討論 48 5-1 物理模型建立 48 5-1-1 決定奈米碳管的長度 48 5-1-2 決定模擬空間的陣列大小 48 5-1-3 奈米碳管儲氫的物理模型 49 5-2 模擬系統各物理量的統計 58 5-3 儲存量的計算 58 5-4 奈米碳管結構性對儲存及釋放量的影響 63 5-5 管壁間VDW距離對儲存及釋放量的影響 78 5-6 陣列型式對儲存及釋放量的影響 90 5-6-1 容積密度的比較 90 5-6-2 儲存量及釋放量的比較 90 5-6-3 容積密度、儲存量及釋放量的總比較 91 參考文獻 105 自述 109

    1. Louis Schlapbach, and Andreas Zuttel, “Hydrogen-store materials for mobile applications.”, Nature Vol. 414 ( 2001 ) 353-358.
    2. Louis Schlapbach, “Hydrogen as a Fuel and Its Storage for Mobility and Transport”, MRS Bulletin ( 2002 ) 675-679.
    3. the U.S. Department of Energy ( DOE ) by the National Renewable Energy Laboratory, a DOE national lab., “Hydrogen The Fuel for The Future”, ( 1995 ) DOE/GO-10095-099.
    4. S. Orimo , A. Zuttel , L. Schlapbach , G. Majer , T. Fukunaga , H. Fujii, “Hydrogen interaction with carbon nanostructures: current situation andfuture prospects”, Journal of Alloys and Compounds 356–357 ( 2003 ) 716–719.
    5. M. R. Pederson and J. Q. Brooghton, “Nanocapillarity in fullerene tubes”, Phys. Rev. Leet. Vol.69 ( 1992 ) 2689-2692.
    6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, “Storrage of hydrogen in single-walled carbon nanotubes”, Nature Vol. 386 ( 1997 ) 377-379.
    7. A. C. Dillon et al., Proceedings of the 2000 U.S. DOE Hydrogen Proqram.
    8. Y. Ye, C. C. Ahn, C. witham, and B. Fultz, “Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes”, Appl. Phys. Lett. Vol. 74-16 ( 1999 ) 2307-2309.
    9. Liu C., and Fan Y. Y., ” Hydrogen Store in Single-Walled Carbon Nanotubes at Room Temperature”, Science Vol. 286-5 ( 1999 ) 1127-1129.
    10. Hongwei Zhu, Anyuan Cao, Xuesong Li, Cailu Xu, Zongqiang Mao, Dianbo Ruan, Ji Liang, and Dehai Wu, ” Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature”, Applied Surface Science Vol. 178 ( 2001 ) 50-55.
    11. Shigeo Maruyama and Tatsuto Kimuru, “Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotubes”, ASME International Mechanical Engineering Congress and Exhibit, Orland, Nonember 5-11 ( 2000 ).
    12. Vahan V. Simonyan, Phong Diep, and J. Karl Johnson,” Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes”, Journal of Chemical Physics Vol.111 No.21 ( 1999 ) 9778-9783.
    13. Yuchen Ma, Yueyuan Xia, Mingwen Zhao, Ruijin Wang, and Liangmo Mei, ”Effective hydrogen storage in single-wall carbon nanotubes”, Phys. Rev. B Vol. 63 ( 2001 ) 115422.
    14. Yuchen Ma , Yueyuan Xia , Mingwen Zhao , and Minju Ying, ”Structures of hydrogen molecules in single-wall carbon nanotubes”, Chemical Physics Letters Vol. 357 ( 2002 ) 97-102.
    15. Yuchen Ma , Yueyuan Xia , Mingwen Zhao , and Minju Ying, ” Hydrogen storage capacity in single-wall carbon nanotubes”, Phys. Rev. B Vol. 65 ( 2002 ) 155430.
    16. S. Iijima,” Helical microtubules of graphitic carbon”, Nature Vol. 354 ( 1991 ) 56-58.
    17. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes , Imperial College Press , ( 1998 ).
    18. Jung M, Eun KY, Lee JK, Baik YJ, Lee KR, and Park JW, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Matericals Vol. 10 1235-1240.
    19. Lim, S. C., Jeong, H.J., Park, Y.S., Bae, D.S., Choi, Y.C., Shin, Y.M., Kim, W.S., An, K.H., Lee, Y.H., Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions, Journal of Vacuum Science & Technology A Vol. 19 ( 2001 ) 1786-1789.
    20. Yu J, Zhang Q, Ahn J, Yoon SF, Rusli, Li YJ, Gan B, Chew K, Tan KH, Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition, Diamond and Related Matericals Vol. 10 ( 2001) 2157-2160.
    21. Matsushita A, Nagai M, Yamakawa K, Hiramatsu M, Sakai A, Hori M, Goto T, Zaima S, Growth of carbon nanotubes by microwave-excited non-equilibrium atmospheric-pressure plasma, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers Vol. 43 ( 2004 ) 424-425.
    22. Smalley R. E. el., “Crystalline Ropes of Metallic Carbon Nanotubes”, Science Vol. 273 ( 1996 ) 483-487.
    23. Qinyu Wang, and J.Karl Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption”, J. Phys. Chem. Bvol. 103 ( 1999 ) 4809-4813.
    24. M. P. Allen et al., Computer Simulation in Chemical Physics, SeriesC: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, ( 1992 ).
    25. M. Meyer et al., Computer Simulation in Material Science, Series E:Applied Sciences Vol. 205, Kluwer Academic , Dordrecht, ( 1991 ).
    26. S. Erkoc, "Annual Reviews of Computational IX", World Scientific Publishing Company, Singapore, 1-103 ( 2001 ).
    27. H. Rafii-Tabar, "Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations", Physics Reports Vol. 325 239-310 ( 2000 ).
    28. R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London , ( 1997 ).
    29. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London , ( 1987 ).
    30. P. L. Huyskens et al., Intermolecular Forces , Springer-Verlag, Berlin , ( 1991 ).
    31. M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces between Molecules, Oxford University Press, London, (1986).
    32. Seung Mi Lee , Ki Soo Park, and Young Chul Choi,” Hydrogen Adsorption and Storage in Carbon Nanotubes”, Synthetic Metals Vol. 113 ( 2000 ) 209–216.
    33. D. E. Williams, “Nonbonded Potential Parameters Derived from Crystalline Hydrocarbons”, the Journal of Chemical Physics Vol. 47 ( 1967 ) 4680-4684.
    34. K.A. Williams , and P.C. Eklund,” Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes”, Chemical Physics Letters Vol. 320 ( 2000 ) 352–358.
    35. I. F. Silvera, and V. V. Goldman,” The isotropic intermolecular potential for H2 and D2 in the solid and gas phases”, Journal of Chemical Physics Vol. 69 ( 1978 ) 4209-4213.
    36. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley &Sons, Inc., New York, ( 1992 ).
    37. J. M. Goodfellow et al., Molecular Dynamics, CRC Press, Boston, ( 1990 ).
    38. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, ( 1997 ).
    39. D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, ( 1990 ).
    40. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, ( 1991 ).
    41. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, ( 1996 ).
    42. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London , ( 1987 ).

    下載圖示 校內:立即公開
    校外:2004-07-30公開
    QR CODE