簡易檢索 / 詳目顯示

研究生: 陳咨佐
Chen, Tzu-Tso
論文名稱: 釩硫化合物配位基上的反應活性之探討
The Ligand-based Reactivity of Vanadium-thiolate Complexes
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 釩硫化合物金屬硫錯合物二氯甲烷硝酸
外文關鍵詞: vanadium-thiolate complexes, vanadium, metal-thiolate complexes, ligand-based, dichloromethane, HNO3, vanadium-nitrosyl complex, oxygenation
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這份研究中,我們發現了五種釩硫錯合物並鑑定其性質。金屬硫錯合物的反應性已經在文獻上廣為探討,但是對於前過渡金屬的金屬硫錯合物,這一方面的課題還有待深入研究。在此,我們合成出一釩三價錯合物:[VIII(PS2」SH)2][PPh4] (1)。此化合物1可以對二氯甲烷進行親核反應而形成化合物 [VIII(PS3」)Cl][PPh4] (2) 及 [VIV((PS3」)2CH2)] (3)。在沒有二氯甲烷的環境下,化合物1 可以和空氣中的氧氣反應,這些反應包括金屬中心的氧化、雙硫鍵的形成以及硫配位基上的氧原子加成,形成了化合物 [VIV(PS2」SH)(PS3」)][PPh4] (4a) 、 [VIII(P2S4」)(S-S)-][PPh4] (5) 以及其他的釩氧硫化合物 (vanadium sulfenate/disulfenate complexes),這些釩硫化合物的反應性可以用光譜儀及質譜儀來檢視。化合物1, 2 , 3, 4a 亦經由X-ray單晶繞射來鑑定其結構。除此之外,我們也合成了一種用一氧化氮做為配位基的釩金屬錯合物:[V(PS3」)NO][PPh4] (6)。但是對於化合物6的合成路徑至今還不清楚,推測可能是經由被汙染的硝酸而來。對於上述的反應,我們期待更進一步的研究。

    At this work, five vanadium-thiolate complexes have been found and characterized. The reactivity of metal-thiolate complexes has been investigated extensively in literatures. In contrast, such chemistry has not been well explored for early-transition metal-thiolate complexes. Herein, we obtain a vanadium (III) complex, [VIII(PS2」SH)2][PPh4] (1), that can undergo nucleophilic attack toward to dichloromethane and form [VIII(PS3」)Cl][PPh4] (2) and [VIV((PS3」)2CH2)] (3). With the absence of CH2Cl2, complex 1 exhibited several types reactivity toward to dioxygen. They include metal-center oxidation, disulfide formation, and oxygenase on metal bound thiolate, leading to the formation of [VIV(PS2」SH)(PS3」)][PPh4] (4a), [VIII(P2S4」)(S-S)-][PPh4] (5) and vanadium sulfenate/disulfenate complexes, respectively. These resulting products have been identified by spectroscopies and mass spectrometry. In particular, complexes 1, 2, 3, 4a have been structurally characterized by X-ray crystallography. In addition, a {V-NO}4 compound, [V(PS3」)NO][PPh4] (6), was also isolated and characterized. The formation of this vanadium-nitrosyl species is not clear, likely from contaminated nitric acid in the reaction. Further investigation is necessary to have a better understanding of this chemistry.

    Table of Contents Abstract……………………………………………………………………………………..I Abstract in Chinese……………………………………………………………………….II Table of Contents…………………………………………………………………………III List of Figures…………………………………………….……………………………….V List of Tables………………………………………………………………….…………VIII List of Schemes…………………………………………………………………….… IX Abbreviations……………………………………………………………………………..XI Chapter 1: Introduction…………………………………………………..1 1.1. Vanadium-thiolate Chemistry………………………………………………….2 1.2. Reactivity of Metal-thiolate Complexes….…………………………………...7 1.3. Biochemistry of Nitric Oxide………………………………………………….12 Chapter 2: Experimental section………………………………………15 Chapter 3: Results…………………………………………………….…21 3.1. Synthesis……………………………………………..………………………..22 3.2. X-ray Structural Determination……………..…………………………...…27 3.3. Nuclear Magnetic Resonance Spectra of Vanadium Complexes………..44 3.4. Comparison of Ultraviolate-visible Spectra…………………………………47 3.5. MASS Spectrometry Analysis……………………………………………..…51 3.6. Electrochemical Results……………………………………...………………57 Chapter 4: Discussions………………………………………………....61 4.1. Ligand-based Nucleophilic Attack Toward to Dichloromethane………….62 4.2. Metal-center Oxidation, S-based Oxygenation and The Formation of Disulfide towards to Dioxygen………………………………..69 Chapter 5: Conclusions…………………………………..…………….78 References…………………………………………….……………..……83 Appendix A………………………………………………………………..87 Appendix B………………………………………………………………..94 List of Figures Chapter 1 Figure 1-1. The mechanism of VHPOs transferring thiolether to sulfoxide…………3 Figure 1-2. The active site of chloroperoxidase (VClPO)……………………………..3 Figure 1-3. The active site of vanadium nitrogenases.………………….…………….4 Figure 1-4. Vanadate serves as insulin mimic to inhibit PTP…..……………………..6 Figure 1-5. The nonoxovandium complex: Amavidin………………………………….6 Figure 1-6. Disulfide bond cleavage and formation reaction occurred on the ruthenium and nickel complexes…………………………………………...8 Figure 1-7. Oxygenation occurred on the ruthenium-thiolate complexes.…...……...8 Figure 1-8. Nickel-thiolate complexes showed nucleophilic attack ability.…….…….9 Figure 1-9. Dichloromethane was activated by ruthenium complex…………………9 Figure 1-10. Dimeric molybdenum complexes activate dibromomethane to form the methylene-bridge…………………………………………………………10 Figure 1-11. L-arginine turn to L-citrulline and nitric oxide through nitric oxide synthase enzymes………………………………………………………..12 Figure 1-12. Mechanism of DNICs complex transferring NO2 to NO………………13 Chapter 3 Figure 3-1. X-ray structure of [VIII(PS2」SH)2][PPh4] (1)…………………..…..……..28 Figure 3-2. X-ray structure of [VIV((PS3」)2CH2)] (3)….………………………………32 Figure 3-3. Thermal ellipsoid plots of metal center of complex 3, [VIV(PS3」)2CH2] ………………………………………………………………………………34 Figure 3-4. X-ray structure of [VIV(PS2」SH)(PS3」)][AsPh4] (4b)…………..………..36 Figure 3-5. Thermal ellipsoid plots of metal center of complex 4b, [VIV(PS2」SH)(PS3」)][AsPh4] (4b)…………..…………………………….36 Figure 3-6. X-ray structure of [V(PS3」)NO][PPh4] (6)……………………..………..41 Figure 3-7. Thermal ellipsoid plots of metal center of complex 6, [V(PS3」)NO][PPh4] (6)………………………..………………………….43 Figure 3-8. 400MHz 1H-NMR spectrum of [VIII(PS2」SH)2][PPh4] (1).….……….….44 Figure 3-9. 400MHz 1H-NMR spectrum of [VIII(PS3」)Cl][PPh4] (2)….……………...45 Figure 3-10. 400MHz 1H-NMR spectrum of [VIV((PS3」)2CH2)] (3)….….…………45 Figure 3-11. 400MHz 1H-NMR spectrum of [VIV(PS2」SH)(PS3」)][PPh4] (4a)……..46 Figure 3-12. Uv/vis spectrum of [VIII(PS2」SH)2][PPh4] (1)….……………..….…..…48 Figure 3-13. Uv/vis spectrum of [VIII(PS3」)Cl][PPh4] (2)….……………….…………48 Figure 3-14. Uv/vis spectrum of [VIV((PS3」)2CH2)] (3)….……………………..…...49 Figure 3-15. Uv/vis spectrum of [VIV(PS2」SH)(PS3」)][PPh4] (4a).………………….49 Figure 3-16. Uv/vis spectrum of [V(PS3」)NO][PPh4] (6)……………………………..50 Figure 3-17. FAB-MASS spectrum of [VIII(PS2」SH)2][PPh4] (1)…….….…………...51 Figure 3-18. ESI-MASS spectrum of [VIII(PS2」SH)2][PPh4] (1)….…….………..…..52 Figure 3-19. FAB-MASS spectrum of [VIV((PS3」)2CH2)] (3)…..……………….…..53 Figure 3-20. ESI-MASS spectrum of [VIV((PS3」)2CH2)] (3)………………….………54 Figure 3-21. ESI-MASS spectrum of [VIV(PS2」SH)(PS3」)][PPh4] (4a)…………….55 Figure 3-22. ESI-MASS spectrum of [V(PS3」)NO][PPh4] (6)……………………….56 Figure 3-23. Cyclic voltammogram of [VIII(PS2」SH)2][PPh4] (1)………….……..….57 Figure 3-24. Cyclic voltammogram of [VIII(PS3」)Cl][PPh4] (2)…….………………...58 Figure 3-25. Cyclic voltammogram of [VIV((PS3」)2CH2)] (3)..…….……………….59 Figure 3-26. Cyclic voltammogram of [VIV(PS2」SH)(PS3」)][PPh4] (4a)……………60 Chapter 4 Figure 4-1. 300 MHz 1H-NMR Spectra of PS3」H3 and residual solution after complex 1 changed to complex 2…………………………….........…….63 Figure 4-2. Variation UV/vis spectra of [VIII(PS2」SH)2][PPh4] (1) in CH2Cl2……….64 Figure 4-3. The 500 MHz 1H-NMR spectra of [VIII(PS2」SH)2][PPh4] (1), complex (1) transferring to (2), and [VIII(PS3」)Cl][PPh4] (2) in CD2Cl2……………....65 Figure 4-4. ESI-MASS spectra of [VIV((PS3」)2CH2)] (3) and deuterated complex 3. ……………………………………………………………………………….68 Figure 4-5. ESI-MASS spectrum of [VIII(PS2」SH)2][PPh4] (1) in the range of 1190m/z to 1250 m/z……………………………………………………….69 Figure 4-6. The MS/MS spectrum of [VIII(P2S4」)(S-S)]- (5) (1193 m/z)……………71 Figure 4-7. The MS/MS spectrum of [VIV(PS2」SH)(PS3」)][PPh4] (4a) (1194 m/z) ………………………………………………………………………...……..73 Figure 4-8. Variation UV/vis spectra of 1 in CH3CN in the air……………………….75 Figure 4-9. ESI-MASS spectrum of [VIV((PS3」)2CH2)] (3) in the range of 1190m/z to 1320 m/z…………………………………………………………………….76 Figure 4-10. ESI-MASS spectrum of [VIV(PS2」SH)(PS3」)][PPh4] (4a) in the range of 1190m/z to 1250 m/z……………………………………………….…….77 Chapter 5 Figure 5-1. Reaction occurred in generating thiyl radicals, or by reaction with electrophiles, or oxygen…………………………………………………...82 List of Tables Chapter 3 Table 3-1. X-ray structure parameters of [VIII(PS2」SH)2][PPh4] (1)………..……….29 Table 3-2. Selected bond lengths and angles of [VIII(PS2」SH)2][PPh4] (1)………...30 Table 3-3. Comparison of V-S average bond length comparison of six-coordinated V(III) complexes……………………….………….…………………………30 Table 3-4. X-ray structure parameters of [VIV((PS3」)2CH2)] (3)……………………33 Table 3-5. Selected bond lengths and angles of [VIV((PS3」)2CH2)] (3)……….........34 Table 3-6. X-ray structure parameters of [VIV(PS2」SH)(PS3」)][PPh4] (4a)……...…37 Table 3-7. Selected bond lengths and angles of [VIV(PS2」SH)(PS3」)][PPh4] (4a)..38 Table 3-8. Comparison of bond lengths for selected vanadium-thiolate complexes. …………………………………………………………………………………40 Table 3-9. X-ray structure parameters of [V(PS3」)NO][PPh4] (6)………………......42 Table 3-10. Selected bond lengths and angles of [V(PS3」)NO][PPh4] (6)…………43 Table 3-11. Extinction coefficient and absorption wavelength of complex 1 to 4a ……………………………………………………………………………….47 Table 3-12. Cyclic valtommetry studied of complex 1 to 4a…………………………60 List of Schemes Chapter 1 Scheme 1-1. Reaction of Vanadate-dependent Haloperoxidases (VHPOs)………..3 Scheme 1-2. The reaction of nitrogenases in biosystems…………………………….4 Scheme 1-3. Disulfide bond formation and cleavage through vanadium complexes ………………………………………………………………………………6 Chapter 3 Scheme 3-1. The synthetic route of [VIII(PS2」SH)2][PPh4] (1)…………………..….23 Scheme 3-2. The synthetic route of [VIII(PS3」)Cl][PPh4] (2)……………………...…23 Scheme 3-3. The synthetic route of [VIV((PS3」)2CH2)] (3)…………………….…….24 Scheme 3-4. The synthetic route of [VIV(PS2」SH)(PS3」)][PPh4] (4a).….………….25 Scheme 3-5. The synthetic route of [V(PS3」)NO][PPh4] (6)………………………...26 Scheme 3-6. Six-coordinated vanadium(III) complexes with multi-thiolate ligands …………………………………………………………………………….31 Scheme 3-7. Selected vanadium (III) and (IV) thiolate complexes in different coordination number…………………………………………………….39 Chapter 4 Scheme 4-1. The conversion of [VIII(PS2」SH)2][PPh4] (1) to [VIII(PS3」)Cl][PPh4] (2) in CH2Cl2………………………………………………………………….63 Scheme 4-2. The relationship of [VIII(PS2」SH)2][PPh4] (1) and [VIII(PS3」)Cl][PPh4] (2)………………...……………………………………………………….66 Scheme 4-3. Isotopic experiment in the synthesis of [VIV((PS3」)2CH2)] (3) and deuterated 3, [VIV((PS3」)2CD2)]................…………………………….67 Scheme 4-4. S-based oxygenation of [VIII(PS2』SH)2][PPh4] (1)…………………….70 Scheme 4-5. Molecule conformations corresponding to the ion peak of the MS/MS spectrum of 1193 m/z………….………………………………………..72 Scheme 4-6. Molecule conformations corresponding to the ion peak of the MS/MS spectrum of 1194 m/z……………………………………………………74 Scheme 4-7. S-based oxygenation of [VIV((PS3」)2CH2)] (3)………………………76 Chapter 5 Scheme 5-1. The overall chemical reactions of complexes 1 to 6………………….79 Scheme 5-2. The synthetic routes of two vanadium (IV) complexes……………….81

    References

    1. Rehder, D. Bioinorganic Vanadium Chemistry., Inorganic Chemistry, A Wiley Textbook Series, Wiley, England, 2008.
    2. D. Rehder, G. Santoni, G. M. Licini, C. Schulzke and B. Meier, Coordin Chem Rev, 2003, 237, 53-63.
    3. H. B. t. Brink, H. E. Schoemaker and R. Wever, European Journal of Biochemistry, 2001, 268, 132-138.
    4. A. Messerschmidt, L. Prade and R. Wever, Biol. Chem., 1997, 378, 309-315.
    5. R. R. Eady, Chemical Reviews, 1996, 96, 3013-3030.
    6. R. R. Eady, Coordin Chem Rev, 2003, 237, 23-30.
    7. J. S. Kim and D. C. Rees, Science, 1992, 257, 1677-1682.
    8. O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard and D. C. Rees, Science, 2002, 297, 1696-1700.
    9. D. Rehder, J Inorg Biochem, 2000, 80, 133-136.
    10. D. Rehder, Coordin Chem Rev, 1999, 182, 297-322.
    11. P. M. Reis, J. A. L. Silva, A. F. Palavra, J. J. R. F. d. Silva, T. Kitamura, Y. Fujiwara and A. J. L. Pombeiro, Angewandte Chemie International Edition, 2003, 42, 821-823.
    12. D. Wang, A. Behrens, M. Farahbakhsh, J. Gätjens and D. Rehder, Chemistry - A European Journal, 2003, 9, 1805-1813.
    13. C. A. Grapperhaus, S. Poturovic and M. S. Mashuta, Inorg Chem, 2002, 41, 4309-4311.
    14. M. Kumar, R. O. Day, G. J. Colpas and M. J. Maroney, J. Am. Chem. Soc., 1989, 111, 5974-5976.
    15. E. L. Blinn and D. H. Busch, J. Am. Chem. Soc., 1968, 90, 4280-&.
    16. Y. M. Hsiao, S. S. Chojnacki, P. Hinton, J. H. Reibenspies and M. Y. Darensbourg, Organometallics, 1993, 12, 870-875.
    17. G. Musie, J. H. Reibenspies and M. Y. Darensbourg, Inorg Chem, 1998, 37, 302-310.
    18. L. F. Lindoy and D. H. Busch, Inorg Chem, 1974, 13, 2494-2498.
    19. J. J. Wilker and S. J. Lippard, Inorg Chem, 1997, 36, 969-978.
    20. C. A. Grapperhaus and M. Y. Darensbourg, Accounts Chem. Res., 1998, 31, 451-459.
    21. B. Albela, E. Bothe, O. Brosch, K. Mochizuki, T. Weyhermuller and K. Wieghardt, Inorg Chem, 1999, 38, 5131-5138.
    22. H. J. Krueger and R. H. Holm, Inorg Chem, 1989, 28, 1148-1155.
    23. C. A. Grapperhaus, S. Poturovic and M. S. Mashuta, Inorg Chem, 2005, 44, 8185-8187.
    24. M. Y. Darensbourg, T. Tuntulani and J. H. Reibenspies, Inorg Chem, 1995, 34, 6287-6294.
    25. B. S. Chohan and M. J. Maroney, Inorg Chem, 2006, 45, 1906-1908.
    26. B. S. Hammes and C. J. Carrano, Inorg Chem, 2001, 40, 919-927.
    27. S. S. Oster, R. J. Lachicotte and W. D. Jones, Inorganica Chimica Acta, 2002, 330, 118-127.
    28. J. A. Bellefeuille, C. A. Grapperhaus, A. Derecskei-Kovacs, J. H. Reibenspies and M. Y. Darensbourg, Inorganica Chimica Acta, 2000, 300-302, 73-81.
    29. Q. Wang, A. C. Marr, A. J. Blake, C. Wilson and M. Schroder, Chem Commun, 2003, 2776-2777.
    30. C.-W. Chang, Y.-C. Lin, G.-H. Lee and Y. Wang, Organometallics, 2003, 22, 3891-3897.
    31. V. W. W. Yam, P. K. Y. Yeung and K. K. Cheung, J. Chem. Soc.-Chem. Commun., 1995, 267-269.
    32. Z. Li, W. Zheng, H. Liu, K. F. Mok and T. S. A. Hor, Inorg Chem, 2003, 42, 8481-8488.
    33. J. R. Bleeke, M. Shokeen, E. S. Wise and N. P. Rath, Organometallics, 2006, 25, 2486-2500.
    34. D. Sellmann, M. Waeber, H. Binder and R. Boese, Z.Naturforsch.(B), 1986, 41, 1541-1550.
    35. M. McKenna, L. L. Wright, D. J. Miller, L. Tanner, R. C. Haltiwanger and M. R. DuBois, J. Am. Chem. Soc., 1983, 105, 5329-5337.
    36. W.-C. Chu, C.-C. Wu and H.-F. Hsu, Inorg Chem, 2006, 45, 3164-3166.
    37. R.-C. Wang, 國立成功大學化學研究所碩士班論文, 2006.
    38. R. F. Furchgott, Angewandte Chemie International Edition, 1999, 38, 1870-1880.
    39. D. E. Koshland, Science, 1992, 258, 1861-1861.
    40. J. J. B. Hibbs, R. R. Taintor, Z. Vavrin and E. M. Rachlin, Biochemical and Biophysical Research Communications, 1988, 157, 87-94.
    41. C.-H. Chen, S.-J. Chiou and H.-Y. Chen, Inorg Chem, 2010, 49, 2023-2025.
    42. M.-C. Tsai, F.-T. Tsai, T.-T. Lu, M.-L. Tsai, Y.-C. Wei, I. J. Hsu, J.-F. Lee and W.-F. Liaw, Inorg Chem, 2009, 48, 9579-9591.
    43. F.-T. Tsai, T.-S. Kuo and W.-F. Liaw, J. Am. Chem. Soc., 2009, 131, 3426-3427.
    44. T.-T. Lu, H.-W. Huang and W.-F. Liaw, Inorg Chem, 2009, 48, 9027-9035.
    45. J. H. Enemark and R. D. Feltham, J. Am. Chem. Soc., 1974, 96, 5002-5004.
    46. J. H. Enemark and R. D. Feltham, Coordin Chem Rev, 1974, 13, 339-406.
    47. L. E. Manzer, Inorg. Synth., 1982, 21, 135-140.
    48. P. N. Hawker and P. L. Timms, J. Chem. Soc.-Dalton Trans., 1983, 1123-1126.
    49. E. Block, G. Ofori-Okai and J. Zubieta, J. Am. Chem. Soc., 1989, 111, 2327-2329.
    50. G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Correction Program, University of Göttingen, Göttingen, Germany, 1996.
    51. G. M. sheldrick, SHELXTL, Program for Crystal Structure Determination, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
    52. C. Furlani, Tomlinso.Aa, P. Porta and Sgamello.A, Journal of the Chemical Society a -Inorganic Physical Theoretical, 1970, 2929-2934.
    53. H. Zhu, C. Chen, X. Zhang, Q. Liu, D. Liao and L. Li, Inorganica Chimica Acta, 2002, 328, 96-104.
    54. H. Nekola, D. Wang, C. Gruning, J. Gatjens, A. Behrens and D. Rehder, Inorg Chem, 2002, 41, 2379-2384.
    55. H. P. Zhu, Y. H. Deng, X. Y. Huang, C. N. Chen and Q. T. Liu, Acta Crystallogr C, 1997, 53, 692-693.
    56. J. H. Welch, R. D. Bereman and P. Singh, Inorg Chem, 1988, 27, 2862-2868.
    57. L. C. Porter, S. G. Novick and H. H. Murray, J. Coord. Chem., 1994, 31, 47-55.
    58. H. F. Hsu, C. L. Su, N. O. Gopal, C. C. Wu, W. C. Chu, Y. F. Tsai, Y. H. Chang, Y. H. Liu, T. S. Kuo and S. C. Ke, Eur J Inorg Chem, 2006, 1161-1167.
    59. T. W. Hayton, B. O. Patrick and P. Legzdins, Inorg Chem, 2004, 43, 7227-7233.
    60. T. W. Hayton, B. O. Patrick and P. Legzdins, Organometallics, 2004, 23, 657-664.
    61. T. W. Hayton, P. Legzdins and B. O. Patrick, Inorg Chem, 2002, 41, 5388-5396.
    62. T. W. Hayton, P. J. Daff, P. Legzdins, S. J. Rettig and B. O. Patrick, Inorg Chem, 2002, 41, 4114-4126.
    63. K. Wieghardt, M. Kleineboymann, W. Swiridoff, B. Nuber and J. Weiss, J. Chem. Soc.-Dalton Trans., 1985, 2493-2597.
    64. F. Bottomley, J. Darkwa and P. S. White, Organometallics, 1985, 4, 961-965.
    65. T. W. Hayton, P. Legzdins and W. B. Sharp, Chemical Reviews, 2002, 102, 935-992.
    66. M. T. Ashby, J. H. Enemark and D. L. Lichtenberger, Inorg Chem, 1988, 27, 191-197.
    67. C. R. Cornman, T. C. Stauffer and P. D. Boyle, J. Am. Chem. Soc., 1997, 119, 5986-5987.
    68. M.-L. Tsai, C.-C. Chen, I. J. Hsu, S.-C. Ke, C.-H. Hsieh, K.-A. Chiang, G.-H. Lee, Y. Wang, J.-M. Chen, J.-F. Lee and W.-F. Liaw, Inorg Chem, 2004, 43, 5159-5167.

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE