簡易檢索 / 詳目顯示

研究生: 梁立翰
Liang, Li-Han
論文名稱: 拆港對海域水動力與地形變遷之影響
Hydrodynamic and Morphodynamic Changes due to the Sea Harbor Removal
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 安平港黃金海岸水動力變化地形變遷河口漂沙SMS
外文關鍵詞: Harbor, Golden Coast, SMS, Hydrodynamic, Morphodynamic Changes
相關次數: 點閱:144下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣四周擁有豐富的海洋資源,早期漁業捕撈業的興盛使得漁港數量多,然而港口結構物可能破壞海岸沉積物運移的平衡,造成海岸線侵蝕或淤積現象。本研究以安平港的興建為例,探討其對臨近之黃金海岸的影響,並分析假設拆港後對水動力及海岸地形變遷之影響。本研究利用地表水模擬系統(Surface-Water Modeling System, SMS)中的水動力模式(CMS-Wave和CMS-Flow),以夏、冬兩季代表事件模擬臺南安平港口拆除前後,當地沿岸的水動力變化及地形變遷機制,同時利用漂砂模式(PTM)分析二仁溪河口漂砂的運移軌跡。
    研究結果顯示,拆港後,在距離原港口1 km範圍內的波高有顯著的變化;平均流速在拆港後於原港口南側2.5 km範圍內亦有明顯差異,尤其在原港口防波堤附近影響最大,隨距離港口越遠影響程度越小,安平港拆除後,由於距離關係,至黃金海岸段的水動力變化已不明顯。地形變遷方面,港口拆除前後主要影響地形侵淤趨勢的位置在距離港口南邊1 km範圍內,在港口拆除前,夏季有淤積趨勢,冬季則無明顯侵淤變化;港口拆除後,夏季的堆積趨勢減小,甚至出現侵蝕現象,而冬季則因少了防波堤的屏蔽效應,開始有明顯的侵淤變化,造成這些現象係由於兩季的代表波浪與沿岸結構物的交互作用,使得帶動沿岸漂砂的水動力不同而導致。
    本研究亦模擬了二仁溪河口輸砂之漂砂軌跡,本研究區域無論是夏冬兩季漂沙趨勢是緩慢向北移動,本研究認為波浪方向是造成兩季節漂砂沉積結果不同的主要原因,夏季波向多來自西南方,波浪與潮流作用後使漂沙多堆積於河口北側;冬季波向多來自西北方,使得漂砂自河口出流後多堆積於河口南側。

    The coastal structures protect the wave attack, but it may break the sediment transport cycle and retreat of the coastline. This study takes the removal of Anping Harbor as an example to explore its impact on the Golden Coast, and analyzes the impact of hydrodynamic and morphodynamic changes due to the sea harbor removal. In this article, the CMS model in the Surface-Water Modeling System (SMS) was used to simulate the hydrodynamic and morphodynamic changes on the representative events of summer and winter. And the Particle Tracking Model (PTM) was also applied to simulate the movement trajectory of the drift sand in the Errenxi River estuary.
    The simulation results show that after removed the harbor, the wave height has a significant change within 1 km from the coast, and the average current velocity is also significantly different within 2.5 km south of the harbor, especially near the harbor’s breakwater. The hydrodynamic changes to the Golden Coast section are no longer significant. In terms of morphodynamic changes, the location that mainly affects erosion or deposition before and after harbor removal is within 1 km from the south of the harbor. Before the harbor removed, there is a deposit in summer. After the harbor is removed, the location experiences erosion in summer. Due to the lack of the shielding effect of the breakwater, there is obvious changes in invasion and deposit in winter. These phenomena are caused by the interaction between the waves and coastal structures, which makes the hydrodynamic forces that drive the coastal drift sand different.
    This article also simulated the trajectory of sand transport in the Errenxi River estuary. In the study area, the trend of drifting sand is slowly moving northward. The direction of the waves is the mainly factor caused the drift sand deposition in summer and winter.

    摘要 I ABSTRACT II 致謝 VII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 水動力文獻回顧 3 1-4 本文架構 5 第二章 模式介紹 6 2-1 SMS數值模擬系統 6 2-2 CMS水動力模式 7 2-2-1 CMS-Wave模式 8 2-2-2 CMS-Flow模式 10 2-3 PTM漂砂模式 16 第三章 模式建置與驗證 21 3-1 研究區域之海氣象環境 21 3-2 模式驗證 28 3-2-1 潮位驗證 28 3-2-2 流場驗證 30 3-3 黃金海岸水動力與漂砂模式建置 33 3-3-1 波浪條件 33 3-3-2 潮流及河口條件 34 3-3-3 水深地形 35 3-3-4 底質粒徑條件 37 3-4 PTM模式建置 38 第四章 模擬結果與討論 40 4-1 夏季海象 40 4-1-1 水動力變化 40 4-1-2 地形變遷 46 4-2 冬季海象 51 4-2-1 水動力變化 51 4-2-2 地形變遷 56 4-3 河口漂砂之影響 61 4-3-1 夏季漂砂軌跡 61 4-3-2 冬季漂砂軌跡 62 第五章 結論與建議 64 5-1 結論 64 5-2 建議 65 參考文獻 67

    [1] 經濟部水利署(2017),「氣候變遷對臺灣自然海岸與近岸沙洲之衝擊研究(1/2)」。
    [2] 經濟部水利署(2016~2020),「水文年報」。
    [3] 經濟部水利署第六河川局(2010),「人工養灘工法應用於台南海岸保護之研究(1/2)」。
    [4] 經濟部水利署第六河川局(2011),「人工養灘工法應用於台南海岸保護之研究(2/2)」。
    [5] 經濟部水利署第六河川局(2014),「台南市黃金海岸養灘規劃及檢討分析」。
    [6] 經濟部水利署第六河川局(2018),「台南市北門、七股及黃金海岸防護工法之成效檢討」。
    [7] 交通部運輸研究所(2020),「2018年港灣海氣象觀測資料統計年報(安平港域觀測海氣象資料)」。
    [8] Almar, R., Marchesiello, P., Almeida, L. P., Thuan, D. H., Tanaka, H., & Viet, N. T. (2017). Shoreline response to a sequence of typhoon and monsoon events. Water, 9(6), 364.
    [9] Apotsos, A., Raubenheimer, B., Elgar, S., & Guza, R. (2008). Testing and calibrating parametric wave transformation models on natural beaches. Coastal Engineering, 55(3), 224-235.
    [10] Buttolph, A. M., Reed, C. W., Kraus, N. C., Ono, N., Larson, M., Camenen, B., . . . Zundel, A. K. (2006). Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0, Report 2, sediment transport and morphology change. Tech. Rep. ERDC/CHL TR-06-9, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [11] Connell, K. J., & Zarillo, G. A. (2011). Model Evaluation of Shoaling and Morphologic Response to Storms at Moriches Inlet, Long Island, New York. Journal of Coastal Research(59), 76-85.
    [12] Demirbilek, Z., Connell, K. J., MacDonald, N., & Zundel, A. K. (2008). Particle tracking model (PTM) in the SMS10: IV, link to coastal modeling system. Tech. Rep. ERDC/CHL CHETN-IV-71, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [13] Dresback, K. M., Kolar, R. L., & Dietrich, J. C. (2005). On the form of the momentum equation for shallow water models based on the generalized wave continuity equation. Advances in water resources, 28(4), 345-358.
    [14] Ekman, V. W. (1905). On the influence of the earth's rotation on ocean-currents.
    [15] Esteves, L. S., Williams, J. J., & Lisniowski, M. A. (2009). Measuring and modelling longshore sediment transport. Estuarine, Coastal and Shelf Science, 83(1), 47-59.
    [16] Jonsson, I. G. (1990). Wave-current interactions. The Sea: Ocean Engineering Science, 9, 65-119.
    [17] Kerr, P., Donahue, A., Westerink, J. J., Luettich Jr, R., Zheng, L., Weisberg, R. H., . . . Forrest, D. R. (2013). US IOOS coastal and ocean modeling testbed: Inter‐model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(10), 5129-5172.
    [18] Kobayashi, N., & Johnson, B. D. (2001). Sand suspension, storage, advection, and settling in surf and swash zones. Journal of Geophysical Research: Oceans, 106(C5), 9363-9376.
    [19] Kobayashi, N., Payo, A., & Johnson, B. D. (2010). Suspended sand and bedload transport on beaches. In Handbook of coastal and ocean engineering (pp. 807-823): World Scientific.
    [20] Kobayashi, N., Payo, A., & Schmied, L. (2008). Cross‐shore suspended sand and bed load transport on beaches. Journal of Geophysical Research: Oceans, 113(C7).
    [21] Kriebel, D. L., & Dean, R. G. (1985). Numerical simulation of time-dependent beach and dune erosion. Coastal Engineering, 9(3), 221-245.
    [22] Larson, M., & Kraus, N. C. (1991). Numerical model of longshore current for bar and trough beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(4), 326-347.
    [23] Larson, M., & Kraus, N. C. (2002). NMLONG: numerical model for simulating longshore current. Report 2, Wave-current interaction, roller modeling, and validation of model enhancements. Tech. Rep. ERDC/CHL TR-02-22, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [24] Le Provost, C., Genco, M., Lyard, F., Vincent, P., & Canceil, P. (1994). Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of Geophysical Research: Oceans, 99(C12), 24777-24797.
    [25] Li, H., Lin, L., (2017). Overview SMS/CMS-Flow and CMS-Wave of interface and models and user resources, Engineer Research and Development Center, U.S. Army Corps of Engineers.
    [26] Lin, L., Demirbilek, Z., & Mase, H. (2011). Recent capabilities of CMS-Wave: A coastal wave model for inlets and navigation projects. Journal of Coastal Research(59), 7-14.
    [27] MacDonald, N. J., Davies, M. H., Zundel, A. K., Howlett, J. D., Demirbilek, Z., Gailani, J. Z., . . . Smith, J. (2006). PTM: particle tracking model. Report 1: Model theory, implementation, and example applications. Tech. Rep. ERDC/CHL-TR-06-20, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [28] Mase, H. (2001). Multi-directional random wave transformation model based on energy balance equation. Coastal Engineering Journal, 43(04), 317-337.
    [29] Mase, H., Oki, K., Hedges, T. S., & Li, H. J. (2005). Extended energy-balance-equation wave model for multidirectional random wave transformation. Ocean Engineering, 32(8-9), 961-985.
    [30] Masselink, G., Austin, M., O'Hare, T., & Russell, P. (2007). Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach. Journal of Geophysical Research: Oceans, 112(C10).
    [31] Mattocks, C., & Forbes, C. (2008). A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Modelling, 25(3-4), 95-119.
    [32] Nassar, K., Mahmod, W. E., Masria, A., Fath, H., & Nadaoka, K. (2018). Numerical simulation of shoreline responses in the vicinity of the western artificial inlet of the Bardawil Lagoon, Sinai Peninsula, Egypt. Applied Ocean Research, 74, 87-101.
    [33] Nassar, K., Masria, A., Mahmod, W. E., Negm, A., & Fath, H. (2019). Hydro-morphological modeling to characterize the adequacy of jetties and subsidiary alternatives in sedimentary stock rationalization within tidal inlets of marine lagoons. Applied Ocean Research, 84, 92-110.
    [34] Ortiz, J. C., Salcedo, B., & Otero, L. J. (2014). Investigating the collapse of the Puerto Colombia pier (Colombian Caribbean coast) in March 2009: methodology for the reconstruction of extreme events and the evaluation of their impact on the coastal infrastructure. Journal of Coastal Research, 30(2), 291-300.
    [35] Reed, C. W., Brown, M. E., Sánchez, A., Wu, W., & Buttolph, A. M. (2011). The coastal modeling system flow model (CMS-Flow): Past and Present. Journal of Coastal Research(59), 1-6.
    [36] Sánchez, A., Beck, T. M., Lin, L., Demirbilek, Z., Brown, M., & Li, H. (2012). Coastal Modeling System Draft User Manual.
    [37] Sánchez, A., & Wu, W. (2011). A non-equilibrium sediment transport model for coastal inlets and navigation channels. Journal of Coastal Research(59), 39-48.
    [38] Sánchez, A., Wu, W., Beck, T. M., Li, H., Rosati, J. D., Demirbilek, Z., & Brown, M. (2011). Verification and Validation of the Coastal Modeling System. Report 4. CMS-Flow: Sediment Transport and Morphology Change. Tech. Report ERDC/CHL-TR-11-10, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [39] Sánchez, A., Wu, W., Li, H., Brown, M. E., Reed, C. W., Rosati, J. D., & Demirbilek, Z. (2014). Coastal Modeling System: Mathematical formulations and numerical methods. Tech. Report ERDC/CHL-TR-14-2, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [40] Smith, J. M., Sherlock, A. R., & Resio, D. T. (2001). STWAVE: Steady-state spectral wave model user's manual for STWAVE, Version 3.0. Tech. Report ERDC/CHL-SR-01-1, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
    [41] Soulsby, R. (1997). Dynamics of marine sands.
    [42] Soulsby, R. L., & Whitehouse, R. J. S. (1997). Threshold of sediment motion in coastal environments. In Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1 (p. 145). Centre for Advanced Engineering, University of Canterbury.
    [43] Suh, S. W., Lee, H. Y., & Kim, H. J. (2014). Spatio-temporal variability of tidal asymmetry due to multiple coastal constructions along the west coast of Korea. Estuarine, Coastal and Shelf Science, 151, 336-346.
    [44] Van Rijn, L. C. (1984). Sediment transport, part I: bed load transport. Journal of hydraulic engineering, 110(10), 1431-1456.
    [45] Van Rijn, L. C. (1998). Principles of Coastal Morphology.
    [46] Wang, P., Beck, T. M., & Roberts, T. M. (2011). Modeling regional-scale sediment transport and medium-term morphology change at a dual-inlet system examined with the Coastal Modeling System (CMS): A case study at Johns Pass and Blind Pass, West-central Florida. Journal of Coastal Research(59), 49-60.
    [47] Wu, W., Sanchez, A., & Zhang, M. (2010). An implicit 2-D depth-averaged finite-volume model of flow and sediment transport in coastal waters. U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE