簡易檢索 / 詳目顯示

研究生: 張淑雅
Chang, Su-ya
論文名稱: 兔子耳朵軟骨及軟骨膜細胞之特性研究
Characterization of Cells Derived from Various Layers of Auricular Cartilage
指導教授: 謝式洲
Shieh, Shyh-jou
黃玲惠
Huang, Lynn L.H.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 107
中文關鍵詞: 軟骨分化形成層軟骨膜
外文關鍵詞: cambium layer, Perichondrium, chondrogenesis
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臨床上應用於耳朵軟骨膜移植實驗時,之前的文獻指出有些移植後可促進軟骨的新生,而有些卻無法有軟骨新生的現象,且年紀對於軟骨新生有一定之影響力,對於這些研究到目前並不是十分深入。目前已知在軟骨組織大致可分三層細胞,包括最外側的纖維層(fibrous layer)、軟骨組織(cartilage layer)及在軟骨組織表層的形成層(cambium layer)。
    本論文之實驗目的為了解年輕與成年兔耳軟骨膜及軟骨組織細胞的特性,及其分化能力之比較。首先利用酵素萃取及組織學鑑定方法判定取得分離纖維層、形成層及軟骨組織中之細胞的一致性,並進一步分析細胞表面標誌、群落形成能力(colony forming ability)及其分化能力。
    由實驗結果可知,在細胞型態上,年輕與成年兔纖維層細胞呈現類纖維母細胞型態,軟骨組織的細胞型態為多角型,而形成層的細胞型態則兩者均有。在細胞表面標誌上,年輕與成年兔形成層及軟骨組織表現較多具軟骨分化潛力之細胞標誌。在群落形成能力的比較上,此三層細胞年輕兔均高於成年兔。群落形成效率(colony forming efficiency)均為軟骨組織表現量較高一些;群落形成面積(colony forming area)則是形成層表現量較高一些。此外,在分化實驗中,纖維層分化比例均最差。在軟骨分化上,此三層細胞雖在年輕兔和成年兔均為百分之百,然而年輕兔軟骨組織分化之群落數目高於形成層2倍之多,又年輕兔形成層分化之群落數目高於成年兔形成層2倍,而年輕兔軟骨組織為成年兔軟骨組織為10倍之多。
    總結而言,形成層和軟骨組織不論是年輕兔或成年兔其潛能性均較纖維層高。以年輕兔而言,軟骨組織有較高之軟骨分化潛能性;而以成年兔而言則是形成層保留較高之軟骨新生潛力。

    Perichondrium transplantation has been applied clinically before and shown chondrogenic potential. However, it is not consistent due to variable factors. Age may play an important role. Thus, the researchers pay much attention to this field, but the information is still very limited. Nowadays, it was known that auricular cartilage can roughly be separated into three layers: fibrous, cambium and cartilage layer. The fibrous layer is at the outer part of perichondrium, and the cambium layer is the inner part.
    The aim of this study is to investigate the characteristics of cells from perichondrium and cartilage of young and adult rabbit ears and their potentials of differentiation. In the preliminary, we tried to set up a consistent approach for isolating cambium, fibrous layer cells, and chondrocytes. Afterwards, the characteristics of these three layers, including chondroprogenitor marker profiles, colony forming efficiency, and multi-potent differentiation abilities, were analyzed.
    For the cell morphology in vitro, fibrous layer cells presented as fibroblast-like shape; cambium layer showed fibroblast-like and polygonal appearance; cartilage layer only demonstrated polygonal ones. For the mesenchymal stem cell marker profiles, cambium layer and cartilage layer all expressed higher chondroprogenitor related marker profiles. Regarding colony forming potential, young rabbit is higher than that of adult. Furthermore, cartilage cell layer expressed higher colony forming efficiency than that of cambium layer; cambium cell layer expressed much colony area than that of cartilage cell layer. In the differentiation assay, fibrous layer has the least differentiation potential. In adipogenesis, young rabbit is higher than old one, and the cartilage layer is slightly higher than cambium layer. In osteogenesis, adult rabbit is higher than that of young one. The adult cambium layer is better than cartilage layer for the osteogenesis, however, there is no significant difference between cambium and cartilage layers in young rabbit. In chondrogenesis, young and adult rabbits both showed strong chondrogenic potential.
    In summary, the cambium and cartilage layers both expressed much mesenchymal stem cell markers than that of fibrous layers, and the young cambium cells provided much multi-potent differentiation potential than that of the adult rabbit ears. The perichondrial progenitor cells (cells from cambium layer) did have chondrogenesis potential according to our results. Further investigation of in vitro and in vivo chondrogenesis is valuable. The experimental results obtained from this project will provide important information regarding the mechanism of cell proliferation and differentiation of perichondrial progenitors, and potentially applied in the cartilage tissue engineering in the future.

    中文摘要…………………………………………………………………..2 英文摘要…………………………………………………………………..3 致謝………………………………………………………………………..5 縮寫表……………………………………………………………………..6 目錄………………………………………………………………………..7 表目錄…………………………………………………………………….11 圖目錄…………………………………………………………………….12 第一章 研究背景與目的……………………………………………….. 14 1.1 軟骨膜及軟骨組織簡介………………………………………….. 14 1.1.1 軟骨膜及軟骨組織之解剖結構…………………………… 14 1.1.2 軟骨膜及軟骨組織之細胞型態…………………………… 15 1.1.3 軟骨膜之調控機轉………………………………………… 15 1.1.4 軟骨膜在組織工程上的應用性…………………………… 16 1.2 前驅細胞簡介…………………………………………………….. 18 1.2.1 軟骨前驅細胞之定義……………………………………… 18 1.2.2 不同組織之前驅細胞軟骨分化潛力之探討……………… 18 1.2.3 軟骨前驅細胞之決定……………………………………….19 1.2.3.1 軟骨新生階段…………………………………………. 19 1.2.3.2 間葉細胞凝集及軟骨前驅細胞之決定………………. 19 1.2.3.3 軟骨細胞分化之決定…………………………………..20 1.2.4 軟骨前驅細胞之鑑定及特性分析………………………….21 1.2.4.1 PNA……………………………………………………..21 1.2.4.2 纖維結合蛋白…………………………………………..21 1.2.4.3 細胞標誌………………………………………………..22 1.2.4.4 群落形成分析…………………………………………..22 1.2.5 年紀對於軟骨分化潛力之探討.……………………………22 1.3 軟骨新生簡介………………………. …………………………… 23 1.3.1 誘導幹細胞分化成軟骨細胞之體外試驗方法…………… 23 1.3.1.1 細胞激素及生長因子對於軟骨分化之影響…………. 24 1.3.1.2 化學合成化合物促進軟骨細胞分化之影響…………. 24 1.3.1.3 天然或合成之細胞外基質對於軟骨細胞分化之影響. 25 1.3.1.4 3-D分化系統之比較……………………………………26 1.4 實驗目標…………………………………………………………...26 第二章 藥品、儀器與方法……………………………...........................45 2.1 藥品………………………………………………………………...45 2.1.1 細胞培養…………………………………………………….45 2.1.2 免疫組織染色……………………………………………….45 2.1.3 RNA抽取及RT-PCR……………………………………….45 2.1.3.1 抽RNA………………………………………………….45 2.1.3.2 RT-PCR………………………………………………….46 2.1.3.3 電泳……………………………………………………..46 2.1.4 在體外分化潛能的研究…………………………………….46 2.1.4.1 脂肪分化………………………………………………..46 2.1.4.2 骨分化…………………………………………………..46 2.1.4.3 軟骨分化………………………………………………..46 2.1.5 實驗所用之抗體…………………………………………….47 2.2 儀器………………………………………………………………...47 2.2.1 一般常用儀器……………………………………………….47 2.2.2 實驗特殊儀器……………………………………………….48 2.2.2.1 RT-PCR………………………………………………….48 2.3 方法………………………………………………………………...48 2.3.1 組織石蠟切片……………………………………………….48 2.3.2 細胞培養…………………………………………………….48 2.3.3 骨髓幹細胞萃取…………………………………………….50 2.3.4 脂肪幹細胞萃取…………………………………………….51 2.3.5 免疫組織染色……………………………………………….52 2.3.6 群落形成分析……………………………………………….53 2.3.7 脂肪分化試驗……………………………………………….54 2.3.8 骨分化試驗………………………………………………….54 2.3.9 軟骨分化試驗……………………………………………….55 2.3.10 抽RNA………………………………………………………55 2.3.11 RT-PCR……………………………………………………...57 第三章 軟骨前驅細胞特性分析…………………………………………59 3.1 實驗設計……………………………………………………………59 3.1.1 實驗動物……………………………………………………..59 3.1.2 組織切片……………………………………………………..59 3.1.3 細胞培養……………………………………………………..59 3.1.4 細胞表面標誌………………………………………………..59 3.1.4.1 分離骨髓間葉幹細胞…………………………………...59 3.1.4.2 分離脂肪幹細胞………………………………………...60 3.1.4.3 免疫組織染色……………………………………………60 3.1.4.4 RNA抽取及RT-PCR……………………………………60 3.1.5 在體外分化潛能的研究……………………………………...61 3.1.5.1 脂肪分化…………………………………………………61 3.1.5.2 骨分化……………………………………………………61 3.1.5.3 軟骨分化…………………………………………………62 3.1.6 群落形成分析………………………………………………...62 3.2 實驗結果………………………………………………………….....63 3.2.1 以組織染色法分析軟骨組織………………………………...63 3.2.2 以組織染色法確認取得形成層細胞及軟骨組織細胞之酵素 萃取時間點.………………………………..............................63 3.2.3 以兔子之BMSC及ADMSC確認免疫染色分析法之抗體效用……………………………………………………………...64 3.2.4 比較年輕及成年兔 纖維層細胞、形成層細胞及軟骨組織細 胞在MSC及Chondroprogenitor 相關細胞標誌之分析…....65 3.2.5 比較不同代數年輕及成年紐西蘭白兔纖維層細胞、形成層 細胞及軟骨組織細胞細胞之細胞標誌表現分析.…………...65 3.2.6 觀察纖維層細胞、形成層細胞及軟骨組織細胞之群落形成 分析………………………………..…………………………..66 3.2.7 以各種培養基培養形成層細胞,及分析細胞分化潛能…....66 第四章 討論 4.1 利用酵素萃取法所得到細胞之探討………………………………..68 4.2 探討標誌兔子細胞表面蛋白質之抗體效用………………………..68 4.3 探討年輕及成年兔 纖維層細胞、形成層細胞及軟骨組織細胞在 MSC及Chondroprogenitor 相關細胞標誌之表現………….………69 4.4 探討以RT-PCR偵測細胞外基質表現……………………………….69 4.5 比較纖維層、形成層、軟骨組織細胞在低密度培養之差異性……70 4.6 比較DMEM(low glucose)及DMEM(high glucose)對於細胞培養 之差異性……………………………………………………………….70 第五章 結論 第六章 實驗圖表 第七章 參考文獻

    Alsalameh, S., R. Amin, et al. (2004). "Identification of mesenchymal progenitor cells
    in normal and osteoarthritic human articular cartilage." Arthritis Rheum 50(5):
    1522-32.
    Alvarez, J., J. Horton, et al. (2001). "The perichondrium plays an important role in
    mediating the effects of TGF-beta1 on endochondral bone formation." Dev Dyn
    221(3): 311-21.
    Arai, F., O. Ohneda, et al. (2002). "Mesenchymal stem cells in perichondrium express
    activated leukocyte cell adhesion molecule and participate in bone marrow
    formation." J Exp Med 195(12): 1549-63.
    Baddoo, M., K. Hill, et al. (2003). "Characterization of mesenchymal stem cells
    isolated from murine bone marrow by negative selection." J Cell Biochem 89(6):
    1235-49.
    Brittberg, M., A. Lindahl, et al. (1994). "Treatment of deep cartilage defects in the
    knee with autologous chondrocyte transplantation." N Engl J Med 331(14):
    889-95.
    Deans, R. J. and A. B. Moseley (2000). "Mesenchymal stem cells: biology and potential
    clinical uses." Exp Hematol 28(8): 875-84.
    DeLise, A. M., L. Fischer, et al. (2000). "Cellular interactions and signaling in cartilage
    development." Osteoarthritis Cartilage 8(5): 309-34.
    Delise, A. M. and R. S. Tuan (2002). "Analysis of N-cadherin function in limb
    mesenchymal chondrogenesis in vitro." Dev Dyn 225(2): 195-204.
    Di Nino, D. L., M. L. Crochiere, et al. (2002). "Multiple mechanisms of perichondrial
    regulation of cartilage growth." Dev Dyn 225(3): 250-9.
    Dowthwaite, G. P., J. C. Bishop, et al. (2004). "The surface of articular cartilage
    contains a progenitor cell population." J Cell Sci 117(Pt 6): 889-97.
    Duynstee, M. L., H. L. Verwoerd-Verhoef, et al. (2002). "The dual role of
    perichondrium in cartilage wound healing." Plast Reconstr Surg 110(4): 1073-9.
    Edoff, K. and C. Hildebrand (2003). "Neuropeptide effects on rat chondrocytes and
    perichondrial cells in vitro." Neuropeptides 37(5): 316-8.
    Fickert, S., J. Fiedler, et al. (2003). "Identification, quantification and isolation of
    mesenchymal progenitor cells from osteoarthritic synovium by fluorescence
    automated cell sorting." Osteoarthritis Cartilage 11(11): 790-800.
    Giurea, A., T. J. Klein, et al. (2003). "Adhesion of perichondrial cells to a polylactic
    acid scaffold." J Orthop Res 21(4): 584-9.
    Goldring, M. B., K. Tsuchimochi, et al. (2006). "The control of chondrogenesis." J Cell
    Biochem 97(1): 33-44.
    Grogan, S. P., A. Barbero, et al. (2007). "Identification of markers to characterize and
    sort human articular chondrocytes with enhanced in vitro chondrogenic
    capacity." Arthritis Rheum 56(2): 586-95.
    Han, Y. S., O. S. Bang, et al. (2004). "High dose of glucose promotes chondrogenesis via
    PKCalpha and MAPK signaling pathways in chick mesenchymal cells." Cell
    Tissue Res 318(3): 571-8.
    Hatakeyama, Y., J. Nguyen, et al. (2003). "Smad signaling in mesenchymal and
    chondroprogenitor cells." J Bone Joint Surg Am 85-A Suppl 3: 13-8.
    Heng, B. C., T. Cao, et al. (2004). "Directing stem cell differentiation into the
    chondrogenic lineage in vitro." Stem Cells 22(7): 1152-67.
    105
    Hering, T. M. (1999). "Regulation of chondrocyte gene expression." Front Biosci 4:
    D743-61.
    Ito, Y., J. S. Fitzsimmons, et al. (2001). "Localization of chondrocyte precursors in
    periosteum." Osteoarthritis Cartilage 9(3): 215-23.
    Jian-Wei, X., M. A. Randolph, et al. (2005). "Producing a flexible tissue-engineered
    cartilage framework using expanded polytetrafluoroethylene membrane as a
    pseudoperichondrium." Plast Reconstr Surg 116(2): 577-89.
    Katz, A. J., A. Tholpady, et al. (2005). "Cell surface and transcriptional
    characterization of human adipose-derived adherent stromal (hADAS) cells."
    Stem Cells 23(3): 412-23.
    Lim, S. M., Y. S. Choi, et al. (2005). "Isolation of human periosteum-derived
    progenitor cells using immunophenotypes for chondrogenesis." Biotechnol Lett
    27(9): 607-11.
    Majumdar, M. K., V. Banks, et al. (2000). "Isolation, characterization, and
    chondrogenic potential of human bone marrow-derived multipotential stromal
    cells." J Cell Physiol 185(1): 98-106.
    Miralles, G., R. Baudoin, et al. (2001). "Sodium alginate sponges with or without
    sodium hyaluronate: in vitro engineering of cartilage." J Biomed Mater Res
    57(2): 268-78.
    O'Driscoll, S. W. and J. S. Fitzsimmons (2001). "The role of periosteum in cartilage
    repair." Clin Orthop Relat Res(391 Suppl): S190-207.
    Ogawa, T., H. Shimokawa, et al. (2003). "Localization and inhibitory effect of basic
    fibroblast growth factor on chondrogenesis in cultured mouse mandibular
    condyle." J Bone Miner Metab 21(3): 145-53.
    Park, J., K. Gelse, et al. (2006). "Transgene-activated mesenchymal cells for articular
    cartilage repair: a comparison of primary bone marrow-,
    perichondrium/periosteum- and fat-derived cells." J Gene Med 8(1): 112-25.
    Pittenger, M. F., A. M. Mackay, et al. (1999). "Multilineage potential of adult human
    mesenchymal stem cells." Science 284(5411): 143-7.
    Ramalho-Santos, M., S. Yoon, et al. (2002). ""Stemness": transcriptional profiling of
    embryonic and adult stem cells." Science 298(5593): 597-600.
    Togo, T., A. Utani, et al. (2006). "Identification of cartilage progenitor cells in the adult
    ear perichondrium: utilization for cartilage reconstruction." Lab Invest 86(5):
    445-57.
    van der Kraan, P. M., P. Buma, et al. (2002). "Interaction of chondrocytes,
    extracellular matrix and growth factors: relevance for articular cartilage tissue
    engineering." Osteoarthritis Cartilage 10(8): 631-7.
    Verwoerd-Verhoef, H. L., J. K. Bean, et al. (1998). "Induction in vivo of cartilage
    grafts for craniofacial reconstruction." Am J Rhinol 12(1): 27-31.
    Watanabe, N., Y. Tezuka, et al. (2003). "Suppression of differentiation and
    proliferation of early chondrogenic cells by Notch." J Bone Miner Metab 21(6):
    344-52.
    White, D. G., H. P. Hershey, et al. (2003). "Functional analysis of fibronectin isoforms
    in chondrogenesis: Full-length recombinant mesenchymal fibronectin reduces
    spreading and promotes condensation and chondrogenesis of limb
    mesenchymal cells." Differentiation 71(4-5): 251-61.
    Yang, I. H., S. H. Kim, et al. (2004). "Comparison of phenotypic characterization
    between "alginate bead" and "pellet" culture systems as chondrogenic
    differentiation models for human mesenchymal stem cells." Yonsei Med J 45(5):
    891-900.
    106
    Youn, I., J. K. Suh, et al. (2005). "Differential phenotypic characteristics of
    heterogeneous cell population in the rabbit periosteum." Acta Orthop 76(3):
    442-50.

    下載圖示 校內:2010-02-13公開
    校外:2010-02-13公開
    QR CODE