| 研究生: |
林佳儀 Lin, Chia-Yi |
|---|---|
| 論文名稱: |
雙模開放量子系統:退相干與局域化模式動力學 Two-mode Open Quantum Systems: Decoherence and Localized Mode Dynamics |
| 指導教授: |
張為民
Zhang, Wei-Min 蔡錦俊 Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 開放量子系統 、退相干動力學 、局域束縛態 |
| 外文關鍵詞: | open quantum systems, decoherence dynamics, localized bound state |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] P. A. M. Dirac, The Principles of Quantum Mechanics. Oxford: Clarendon Press, 1930.
[2] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics: Vol 1: Basic concepts, tools, and applications; Second edition. Weinheim: Wiley-VCH, 2020.
[3] U. Weiss, Quantum Dissipative Systems. WORLD SCIENTIFIC, 4th ed., 2012.
[4] J. Schwinger, “Brownian Motion of a Quantum Oscillator,” Journal of Mathematical Physics, vol. 2, no. 3, pp. 407–432, 1961.
[5] R. Feynman and F. Vernon, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of Physics, vol. 24, pp. 118–173, 1963.
[6] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems. W.A. Benjamin, 1989.
[7] L. V. Keldysh, Diagram technique for nonequilibrium processes, pp. 47–55. World Scientific, 2023.
[8] A. Caldeira and A. Leggett, “Path integral approach to quantum brownian motion,” Physica A: Statistical Mechanics and its Applications, vol. 121, no. 3, pp. 587–616,1983.
[9] A. Caldeira and A. Leggett, “Quantum tunnelling in a dissipative system,” Annals of Physics, vol. 149, no. 2, pp. 374–456, 1983.
[10] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger,“Dynamics of the dissipative two-state system,” Rev. Mod. Phys., vol. 59, pp. 1–85, Jan 1987.
[11] H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum brownian motion: The functional integral approach,” Physics Reports, vol. 168, no. 3, pp. 115–207, 1988.
[12] F. Haake and R. Reibold, “Strong damping and low-temperature anomalies for the harmonic oscillator,” Phys. Rev. A, vol. 32, pp. 2462–2475, Oct 1985.
[13] B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D, vol. 45, pp. 2843–2861, Apr 1992.
[14] R. Karrlein and H. Grabert, “Exact time evolution and master equations for the damped harmonic oscillator,” Phys. Rev. E, vol. 55, pp. 153–164, Jan 1997.
[15] W.-M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states: Theory and some applications,” Rev. Mod. Phys., vol. 62, pp. 867–927, Oct 1990.
[16] M. W. Y. Tu and W.-M. Zhang, “Non-markovian decoherence theory for a double-dot charge qubit,” Phys. Rev. B, vol. 78, p. 235311, Dec 2008.
[17] M. W.-Y. Tu, M.-T. Lee, and W.-M. Zhang, “Exact master equation and non-markovian decoherence for quantum dot quantum computing,” Quantum Information Processing, vol. 8, pp. 631–646, 2009.
[18] J. Jin, M. W.-Y. Tu, W.-M. Zhang, and Y. Yan, “Non-equilibrium quantum theory for nanodevices based on the feynman–vernon influence functional,” New Journal of Physics, vol. 12, p. 083013, Aug 2010.
[19] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General non-markovian dynamics of open quantum systems,” Phys. Rev. Lett., vol. 109, p. 170402, Oct 2012.
[20] P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures incorporating initial correlations,” Phys. Rev. B, vol. 92, p. 165403, Oct 2015.
[21] P.-Y. Yang and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures,” Frontiers of Physics, vol. 12, p. 127204, Nov 2016.
[22] W.-M. Zhang, “Exact master equation and general non-markovian dynamics in open quantum systems,” The European Physical Journal Special Topics, vol. 227, pp. 1849–1867, Mar 2019.
[23] H.-N. Xiong, W.-M. Zhang, X. Wang, and M.-H. Wu, “Exact non-markovian cavity dynamics strongly coupled to a reservoir,” Phys. Rev. A, vol. 82, p. 012105, Jul 2010.
[24] M.-H. Wu, C. U. Lei, W.-M. Zhang, and H.-N. Xiong, “Non-markovian dynamics of a microcavity coupled to a waveguide in photonic crystals,” Optics Express, vol. 18, no. 17, pp. 18407–18418, 2010.
[25] C. U. Lei and W.-M. Zhang, “Decoherence suppression of open quantum systems through a strong coupling to non-markovian reservoirs,” Phys. Rev. A, vol. 84, p. 052116, Nov 2011.
[26] C. U. Lei and W.-M. Zhang, “A quantum photonic dissipative transport theory,” Annals of Physics, vol. 327, no. 5, pp. 1408–1433, 2012.
[27] Y.-W. Huang and W.-M. Zhang, “Exact master equation for generalized quantum brownian motion with momentum-dependent system-environment couplings,” Phys. Rev. Res., vol. 4, p. 033151, Aug 2022.
[28] H.-L. Lai, P.-Y. Yang, Y.-W. Huang, and W.-M. Zhang, “Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gate-induced charge fluctuations,” Phys. Rev. B, vol. 97, p. 054508, Feb 2018.
[29] C.-Z. Yao and W.-M. Zhang, “Probing topological states through the exact non-markovian decoherence dynamics of a spin coupled to a spin bath in the real-time domain,” Phys. Rev. B, vol. 102, p. 035133, Jul 2020.
[30] Y.-W. Huang, P.-Y. Yang, and W.-M. Zhang, “Quantum theory of dissipative topological systems,” Phys. Rev. B, vol. 102, p. 165116, Oct 2020.
[31] C.-Z. Yao, H.-L. Lai, and W.-M. Zhang, “Quantum transport theory of hybrid super-conducting systems,” Physical Review B, vol. 108, no. 19, p. 195402, 2023.
[32] P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492–1505, 1958.
[33] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., vol. 124, pp. 1866–1878, Dec 1961.
[34] C.-Z. Yao and W.-M. Zhang, “Strong-coupling quantum thermodynamics of quantum brownian motion based on the exact solution of its reduced density matrix,” Phys. Rev. B, vol. 110, p. 085114, Aug 2024.
[35] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, “Non-markovian complexity in the quantum-to-classical transition,” Scientific Reports, vol. 5, p. 13353, Aug 2015.
[36] W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings,” Phys. Rev. Res., vol. 4, p. 023141, May 2022.
[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
[38] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of Nlevel systems,” Journal of Mathematical Physics, vol. 17, pp. 821–825, 05 1976.
[39] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, pp. 119–130, Jun 1976.
[40] S. Nakajima, “On Quantum Theory of Transport Phenomena: Steady Diffusion,” Progress of Theoretical Physics, vol. 20, pp. 948–959, 12 1958.
[41] R. Zwanzig, “Ensemble Method in the Theory of Irreversibility,” The Journal of Chemical Physics, vol. 33, pp. 1338–1341, 11 1960.
[42] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press, 01 2007.
[43] P.-Y. Lo, H.-N. Xiong, and W.-M. Zhang, “Breakdown of bose-einstein distribution in photonic crystals,” Scientific Reports, vol. 5, p. 9423, Mar 2015.
[44] F.-L. Xiong and W.-M. Zhang, “Controlling the dynamics of dissipationless localized bound states in open quantum systems with periodic driving fields,” Phys. Rev. A, vol. 104, p. 062206, Dec 2021.
[45] Y.-C. Lin, P.-Y. Yang, and W.-M. Zhang, “Non-equilibrium quantum phase transition via entanglement decoherence dynamics,” Scientific Reports, vol. 6, p. 34804, Oct 2016.
[46] P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.
[47] D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett., vol. 85, pp. 5483–5487, Dec 2000.
[48] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, pp. 782–786, Apr 2007.
[49] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, pp. 10–18, Jan 2013.
[50] J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, “Quantum biology revisited,” Science Advances, vol. 6, no. 14, p. eaaz4888, 2020.
校內:2026-08-26公開