簡易檢索 / 詳目顯示

研究生: 林佳儀
Lin, Chia-Yi
論文名稱: 雙模開放量子系統:退相干與局域化模式動力學
Two-mode Open Quantum Systems: Decoherence and Localized Mode Dynamics
指導教授: 張為民
Zhang, Wei-Min
蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 41
中文關鍵詞: 開放量子系統退相干動力學局域束縛態
外文關鍵詞: open quantum systems, decoherence dynamics, localized bound state
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要i Abstract ii 誌謝iii Table of Contents iv List of Figures v Nomenclature vii Chapter 1. Introduction 1 1.1. Open Quantum Systems 1 1.2. Quantum Decoherence and Localized Mode 2 1.3. Thesis Overview 3 Chapter 2. Decoherence Dynamics and the Localized Modes of Two-mode Open Quantum System 5 2.1. Formalism 5 2.2. Exact Master Equation Approach 6 2.3. Heisenberg Equation of Motion 9 2.4. Exact Non-Markovian Dynamics 11 Chapter 3. Result and Analysis 14 3.1. Localized Modes: Direct Inter-mode Coupling 14 3.1.1. Symmetric system-environment coupling with λ = 1 14 3.1.2. Asymmetric system-environment coupling with λ ̸= 1 17 3.2. Localized Modes: Indirect Inter-mode Coupling Through Environments 19 3.3. Dynamics of the Retarded Green Function 22 Chapter 4. Conclusion 28 References 29

    [1] P. A. M. Dirac, The Principles of Quantum Mechanics. Oxford: Clarendon Press, 1930.
    [2] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics: Vol 1: Basic concepts, tools, and applications; Second edition. Weinheim: Wiley-VCH, 2020.
    [3] U. Weiss, Quantum Dissipative Systems. WORLD SCIENTIFIC, 4th ed., 2012.
    [4] J. Schwinger, “Brownian Motion of a Quantum Oscillator,” Journal of Mathematical Physics, vol. 2, no. 3, pp. 407–432, 1961.
    [5] R. Feynman and F. Vernon, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of Physics, vol. 24, pp. 118–173, 1963.
    [6] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems. W.A. Benjamin, 1989.
    [7] L. V. Keldysh, Diagram technique for nonequilibrium processes, pp. 47–55. World Scientific, 2023.
    [8] A. Caldeira and A. Leggett, “Path integral approach to quantum brownian motion,” Physica A: Statistical Mechanics and its Applications, vol. 121, no. 3, pp. 587–616,1983.
    [9] A. Caldeira and A. Leggett, “Quantum tunnelling in a dissipative system,” Annals of Physics, vol. 149, no. 2, pp. 374–456, 1983.
    [10] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger,“Dynamics of the dissipative two-state system,” Rev. Mod. Phys., vol. 59, pp. 1–85, Jan 1987.
    [11] H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum brownian motion: The functional integral approach,” Physics Reports, vol. 168, no. 3, pp. 115–207, 1988.
    [12] F. Haake and R. Reibold, “Strong damping and low-temperature anomalies for the harmonic oscillator,” Phys. Rev. A, vol. 32, pp. 2462–2475, Oct 1985.
    [13] B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D, vol. 45, pp. 2843–2861, Apr 1992.
    [14] R. Karrlein and H. Grabert, “Exact time evolution and master equations for the damped harmonic oscillator,” Phys. Rev. E, vol. 55, pp. 153–164, Jan 1997.
    [15] W.-M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states: Theory and some applications,” Rev. Mod. Phys., vol. 62, pp. 867–927, Oct 1990.
    [16] M. W. Y. Tu and W.-M. Zhang, “Non-markovian decoherence theory for a double-dot charge qubit,” Phys. Rev. B, vol. 78, p. 235311, Dec 2008.
    [17] M. W.-Y. Tu, M.-T. Lee, and W.-M. Zhang, “Exact master equation and non-markovian decoherence for quantum dot quantum computing,” Quantum Information Processing, vol. 8, pp. 631–646, 2009.
    [18] J. Jin, M. W.-Y. Tu, W.-M. Zhang, and Y. Yan, “Non-equilibrium quantum theory for nanodevices based on the feynman–vernon influence functional,” New Journal of Physics, vol. 12, p. 083013, Aug 2010.
    [19] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General non-markovian dynamics of open quantum systems,” Phys. Rev. Lett., vol. 109, p. 170402, Oct 2012.
    [20] P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures incorporating initial correlations,” Phys. Rev. B, vol. 92, p. 165403, Oct 2015.
    [21] P.-Y. Yang and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures,” Frontiers of Physics, vol. 12, p. 127204, Nov 2016.
    [22] W.-M. Zhang, “Exact master equation and general non-markovian dynamics in open quantum systems,” The European Physical Journal Special Topics, vol. 227, pp. 1849–1867, Mar 2019.
    [23] H.-N. Xiong, W.-M. Zhang, X. Wang, and M.-H. Wu, “Exact non-markovian cavity dynamics strongly coupled to a reservoir,” Phys. Rev. A, vol. 82, p. 012105, Jul 2010.
    [24] M.-H. Wu, C. U. Lei, W.-M. Zhang, and H.-N. Xiong, “Non-markovian dynamics of a microcavity coupled to a waveguide in photonic crystals,” Optics Express, vol. 18, no. 17, pp. 18407–18418, 2010.
    [25] C. U. Lei and W.-M. Zhang, “Decoherence suppression of open quantum systems through a strong coupling to non-markovian reservoirs,” Phys. Rev. A, vol. 84, p. 052116, Nov 2011.
    [26] C. U. Lei and W.-M. Zhang, “A quantum photonic dissipative transport theory,” Annals of Physics, vol. 327, no. 5, pp. 1408–1433, 2012.
    [27] Y.-W. Huang and W.-M. Zhang, “Exact master equation for generalized quantum brownian motion with momentum-dependent system-environment couplings,” Phys. Rev. Res., vol. 4, p. 033151, Aug 2022.
    [28] H.-L. Lai, P.-Y. Yang, Y.-W. Huang, and W.-M. Zhang, “Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gate-induced charge fluctuations,” Phys. Rev. B, vol. 97, p. 054508, Feb 2018.
    [29] C.-Z. Yao and W.-M. Zhang, “Probing topological states through the exact non-markovian decoherence dynamics of a spin coupled to a spin bath in the real-time domain,” Phys. Rev. B, vol. 102, p. 035133, Jul 2020.
    [30] Y.-W. Huang, P.-Y. Yang, and W.-M. Zhang, “Quantum theory of dissipative topological systems,” Phys. Rev. B, vol. 102, p. 165116, Oct 2020.
    [31] C.-Z. Yao, H.-L. Lai, and W.-M. Zhang, “Quantum transport theory of hybrid super-conducting systems,” Physical Review B, vol. 108, no. 19, p. 195402, 2023.
    [32] P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492–1505, 1958.
    [33] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., vol. 124, pp. 1866–1878, Dec 1961.
    [34] C.-Z. Yao and W.-M. Zhang, “Strong-coupling quantum thermodynamics of quantum brownian motion based on the exact solution of its reduced density matrix,” Phys. Rev. B, vol. 110, p. 085114, Aug 2024.
    [35] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, “Non-markovian complexity in the quantum-to-classical transition,” Scientific Reports, vol. 5, p. 13353, Aug 2015.
    [36] W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings,” Phys. Rev. Res., vol. 4, p. 023141, May 2022.
    [37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
    [38] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N￿level systems,” Journal of Mathematical Physics, vol. 17, pp. 821–825, 05 1976.
    [39] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, pp. 119–130, Jun 1976.
    [40] S. Nakajima, “On Quantum Theory of Transport Phenomena: Steady Diffusion,” Progress of Theoretical Physics, vol. 20, pp. 948–959, 12 1958.
    [41] R. Zwanzig, “Ensemble Method in the Theory of Irreversibility,” The Journal of Chemical Physics, vol. 33, pp. 1338–1341, 11 1960.
    [42] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press, 01 2007.
    [43] P.-Y. Lo, H.-N. Xiong, and W.-M. Zhang, “Breakdown of bose-einstein distribution in photonic crystals,” Scientific Reports, vol. 5, p. 9423, Mar 2015.
    [44] F.-L. Xiong and W.-M. Zhang, “Controlling the dynamics of dissipationless localized bound states in open quantum systems with periodic driving fields,” Phys. Rev. A, vol. 104, p. 062206, Dec 2021.
    [45] Y.-C. Lin, P.-Y. Yang, and W.-M. Zhang, “Non-equilibrium quantum phase transition via entanglement decoherence dynamics,” Scientific Reports, vol. 6, p. 34804, Oct 2016.
    [46] P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.
    [47] D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett., vol. 85, pp. 5483–5487, Dec 2000.
    [48] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, pp. 782–786, Apr 2007.
    [49] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, pp. 10–18, Jan 2013.
    [50] J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, “Quantum biology revisited,” Science Advances, vol. 6, no. 14, p. eaaz4888, 2020.

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE