簡易檢索 / 詳目顯示

研究生: 蕭國良
Hsiao, Kuo-liang
論文名稱: 晶格波茲曼方法在空穴流場下從巨觀尺度到介觀尺度的自然對流現象模擬
Lattice Boltzmann method for simulating the natural convection flows inside a rectangular cavity from macroscopic scale to mesoscopic scale
指導教授: 楊瑞珍
Yang, Ruey-jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 自然對流介觀尺度空穴流晶格波茲曼方法
外文關鍵詞: Natural convection, Mesoscopic scale, Rectangular cavity, Lattice Boltzmann method, LBM
相關次數: 點閱:52下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用簡化的晶格波茲曼方法(LB Model)來處理採用Boussinesq 模式為浮力項的晶格波茲曼方程式,並針對二維自然對流在封閉空穴幾何下,在不同的紐森數(Knudsen number) 、瑞里數(Rayleigh number),以及在固定的普蘭特常數(Prandtl number)為空氣(Pr=0.71)的條件下,探討流體行為以及其不穩定現象。在本研究中,紐森數範圍設定為Kn = 10^(−4)~ 10^(−2),瑞里數範圍設定在Ra <=4×10^5。針對從巨觀到介觀的流體行為及其不穩定現象做分析及探討。在使用晶格波茲曼方法來模擬自然對流的問題中,對於選擇適當的浮力速度( )是非常重要的。因此,本研究提出由kinetic theory為基礎所推導出來的特徵浮力速度來模擬自然對流的問題,並且利用頻譜分析(spectrum analysis)技術來分析非穩態流場的週期性(periodic)之流體不穩定行為。再利用紐賽數(Nusselt number) 及瑞里數(Rayleigh number)來判定發生非穩態且不穩定流體行為的產生機制及範圍。從本研究的相關結果中可以得知,流體穩定行為與紐森數(Knudsen number) 、瑞里數(Rayleigh number)等,有很大的關聯。尤其是紐森數(Knudsen number),其影響流體發生不穩定現象的效應更是明顯。最後,找出紐森數與發生二次不穩定現象之臨界瑞里數(Second Critical Rayleigh number)之關係。

    In many scientific and industrial applications, natural convection inside a closed cavity is one of the interesting and extensive problem. Many kinds of numerical methods have been applied to analyze this problem. The lattice Boltzmann method (LBM), one of the most powerful computational fluid dynamics (CFD) methods in recent years, was used in this problem. Using a simple LB model with the Boussinesq approximation, this study investigates the 2D natural convection problem inside a rectangular cavity at different Rayleigh numbers and Knudsen numbers when the Prandtl number is fixed as within the range of Ra <=4×10^5 from macroscopic scale to mesoscopic scale Kn = 10^(−4)~ 10^(−2) respectively. The flow structures with instability phenomena from macroscopic scale to mesoscopic scale are compared and analyzed. A model for choosing the appropriate value of the velocity scale in simulating the natural convection problems, i.e. , is important by the LBM. Current work presents a model to determine the value of characteristic velocity (V) based on kinetic theory. A spectrum analysis is performed to identify the frequency of the unsteady periodic oscillatory flow. The relationship between the Nusselt number and the Rayleigh number is also explored. The simulation results show that the onset of the instable flow is dependent on both the Rayleigh numbers and Knudsen numbers. The Knudsen number plays a significant role to influence the oscillatory flow structures. Finally, the relation between the Kundsen numbers and the secondary critical Rayleigh number of generating secondary instability is established by a curve fitting technique.

    目 錄 摘要 II Abstract IV 誌 謝 VI 圖目錄 XI 符號說明 XV 第一章 序論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-2.1 有關自然對流的相關文獻 4 1-2.2 有關晶格波茲曼數值方法的相關文獻 7 1-3 研究內容與方向 8 第二章 理論模式 10 2-1 物理模型 10 2-2 晶格波茲曼法(Lattice Boltzmann Method)簡介 12 2-2.1 描述速度場的晶格波茲曼方法 13 2-2.2 描述溫度場的晶格波茲曼方法 17 2-2.3 浮力效應項的處理方法 19 2-3 定義出合適浮力特徵速度以符合晶格波茲曼方法的應用 20 2-4週期性流場的頻率比(Frequency ratio) 23 2-5 初始條件及邊界條件 24 2-5.1 速度場初始條件設定 24 2.5.2 速度場邊界條件設定 24 2-5.3 溫度場初始條件設定 25 2-5.4 溫度場邊界條件設定 26 第三章 數值方法驗證 27 3-1 Rayleigh-Bénard對流問題的驗證 27 3-2 自然對流在正方形空穴的驗證 30 第四章 結果與討論 36 4.1問題描述 36 4-2 巨觀尺度(Macroscopic scale)下的結果與討論 39 4-3 介觀尺度(Mesoscopic scale)下的結果與討論 42 4-4 從巨觀尺度到介觀尺度比較之結果與討論 45 第五章 結論 69 參考文獻 72 自述 76

    Aydin, O., Ünal, A., Ayhan, T., Natural convection in rectangular enclosures heated from one side and cooled from the ceiling, Int. J. Heat Mass Trans. 42: 2345-2355,1999.
    Barrios, G., Rechtman, R., Rojas, J., Tovar, R., The Lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall, J. Fluid Mech. 522: 91-100, 2005.
    Bird, G. A., Molecular, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press Inc, New York, 1994.
    Braga, E. J., Lemos, M. J. S. de, Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models, Int. J. Heat Mass Transfer. 48: 537-550, 2005.
    Cercignani, C., Mathematical Methods in Kinetic Theory, Plenum, New York, 1969.
    Clever, R. M., Busse, F. H., Transition to time-dependent convection, J. Fluid Mech., 65: 625-645, 1974.
    Chen, S., Chen, H., Martinez, D., Matthaeus, W., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett. 67(27) : 3776–3779 , 1991.
    Chen, S., Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30: 329-364, 1998.
    Corcione, M., Effect of thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated form below and cooled form above. Int. Thermal Sci. 42: 199-208, 2003.
    Crunkleton, D. W., Narayanan, R. N., Anderson, T. J., Numerical simulation of periodic flow oscillations in low Prandtl number fluids, Int. J. Heat and Mass trans. 49: 427-438, 2006.
    Davis, G. de Vahl, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids, 3: 249-264, 1983.
    Dawson, S. P., Chen, S., Doolen, G. D., Lattice Boltzmann computations for reaction-diffusion equations, J. Chem. Phys 98: 1514-1523, 1993.
    Dalal, A., Das, M. K., Natural convection in a rectangular cavity heated form below and uniformly cooled form the top and both sides, Int. J. Heat Mass Trans. Part A.49: 301-322, 2006.
    Dixit, H. N., Babu, V., Simulations of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Trans. 49: 727-739, 2006.
    Drazin, P. G., Reid, W. H., Hydrodynamic Stability, Cambridge, New York, 2004.
    Ganzarolli, M. M., Milanez, L. F., Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides, Int. J. Heat Mass Tran. 38(6): 1063-1073, 1995.
    He, X., Chen, S., Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comp. Phys. 146: 282-300, 1998.
    Kim, D. M., Viskanta, R., Study of the effect of wall conductance on natural convection in differentially oriented square cavities, J. Fluid Mech. 144: 153-176, 1984.
    Kalita, J. C., Dalal, D. C., Dass, A. K., Fully compact higher-order computation of steady-state natural convection in a square cavity, Phys Rev. E 64: 006703, 2001.
    Kao, P. H., Yang, R. J., Simulation oscillatory flows in Rayleigh-Bénard convection using the lattice Boltzmann method, Int. J. Heat Mass Trans. 50: 3315-3328,2007.
    Ostrach, S., Natural convection in enclosures, J. Heat Transfer, 50th Anniversary Issue, 110: 1175-1189, 1988.
    Peng, Y., Shu, C, Chew, Y. T., Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, 68: 1-8, 2003.
    Peng, Y., Shu, C., Chew, Y. T., A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity, J. Comp. Phys. 193: 260-274, 2003.
    Qian, Y. H., d’Humieres, D., Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17(6): 479-484, 1992.
    Qian, Y. H., Orszag, S. A., Lattice BGK models for the Navier-Stokes equation:nonlinear deviation in compressible regimes, Europhys. Lett. 21: 255-259, 1993.
    Raabe, D., Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. Eng. 12: R13-46, 2004.
    Shan, X., Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E 55 (3): 2780-2788, 1997.
    Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, ClarendonPress, Oxford, 2001.
    Sharif, M. A. R., Mohammad, T. R., Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling form the side wall, Int. Thermal Sci. 41: 865-878, 2005.
    Shu, C. Shu, Niu, X. D., Chew, Y. T., A lattice Boltzmann kinetic model for microflow and heat transfer, J. Stat. Phys. 121: 239-255, 2005.
    Wannier, G., Statistical Physics, Diver, New York, 1966.
    Xia, C., Murthy, J.Y., Buoyancy-driven flow transitions in deep cavities heated from below, J. Heat Transfer 124: 650-659, 2002.
    Yang, K. T., Transitions and bifurcations in laminar buoyant flows in confined enclosures, J. Heat Transfer, 110: 1191-1204, 1988.
    Yu, D., Mei, R., Luo, L. S., Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences 39: 329-367, 2003.
    Zhou, Y., Zhang, R., Staroselsky, I., Chen, H., Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm, Int. J. Heat Mass Trans. 47: 4869-4879, 2004.
    高柏浩,「晶格波茲曼方法應用於工程與科學計算¬」,國立成功大學博士論文,2007。
    陳逸昕,「晶格波茲曼方法在空穴流場下巨觀尺度與介觀尺度的自然對流現象模擬¬」,國立成功大學碩士論文,2007。

    下載圖示 校內:2009-06-27公開
    校外:2009-06-27公開
    QR CODE