簡易檢索 / 詳目顯示

研究生: 孫家凱
Sun, Chia-Kai
論文名稱: 以化學氣相沉積法磊晶成長垂直單晶矽奈米線陣列應用於太陽能電池
Chemical Vapor Deposition to Epitaxially Grow Vertically Aligned Single Crystal Silicon Nanowire Arrays for Solar Cell Application
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 矽奈米線太陽能電池化學氣相沉積
外文關鍵詞: silicon nanowires, solar cells, chemical vapor deposition
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討二個部份:第一,如何磊晶成長高垂直率的矽奈米線陣列;第二,如何將矽奈米線陣列製作成太陽能電池元件。
    在第一部份,本研究利用化學氣相沉積法在Si(111)基板上磊晶成長高垂直率的單晶矽奈米線陣列。現今在文獻上要成長矽奈米線並不是問題,但要如何成長出高垂直率的單晶矽奈米線陣列仍然有很大的研究空間,文獻中的方法有:在基板上利用微影定義圖案而成長出垂直奈米線或直接在矽基板上以電漿蝕刻成奈米線,而本研究不採用上述方法,純粹以控制反應條件及觸媒厚度成長高垂直率矽奈米線陣列。
    在第二部份,本研究仍然利用化學氣相沉積法於矽奈米線陣列上製作p-n結構。本研究是以熱擴散的方式而非同時於成長奈米線的過程中做摻雜的方式製作p-n接面。在摻雜源的部份,不採用熱門的B2H6、PH3或POCl3等高毒性物質,而使用文獻中未曾使用的 TMB、TMP低毒性液態摻雜源,開發新的摻雜源也為本研究的挑戰之一。

    There are two parts in this thesis. Firstly, the discussion is about how to epitaxially grow vertically aligned silicon nanowire arrays. Secondly, the issue is about how to fabricate the silicon nanowire-based solar cells.
    In part one, we focus on epitaxial growth of vertically aligned single crystal silicon nanowire arrays on Si(111) substrate by chemical vapor deposition. Nowadays in the literatures, there is no problem to synthesize silicon nanowires, but synthesis of vertically aligned single crystal silicon nanowires is still a issue. There are some methods in the literatures: It can grow vertically aligned nanowires by photolithography to define the pattern. Otherwise, the silicon substrate can be directly etched by plasma so as to become the nanowire shape. However, the above methods are not adopted in my research. I just controlled the reaction conditions and thickness of gold film to grow vertically aligned nanowire arrays.
    In part two, p-n junction on the as-grown silicon nanowire arrays is still fabricated by chemical vapor deposition in my research. In my experiment the p-n junction is fabricated with the method of thermal diffusion but not doping and growth of the nanowire simultaneously. About doping sources, I don’t adopt the popular but highly toxic materials, such as B2H6, PH3 or POCl3. Instead, TMB and TMP, having not used in the literatures and lower toxic liquid sources, is used. The development of new doping sources is one of the challenges in my research, too.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1前言 1 1-2矽奈米線之發展 3 1-3矽奈米線應用於太陽能電池之概念 5 1-4研究動機 10 第二章 理論基礎 11 2-1矽的基本性質 11 2-1-1矽的晶體結構 11 2-1-2矽的能帶結構 12 2-1-3矽的電性 13 2-2矽奈米線成長 15 2-2-1 V-L-S成長機制 15 2-2-2化學氣相沉積 17 2-3蝕刻金觸媒 19 2-4太陽能電池特性參數 22 第三章 實驗方法 25 3-1實驗流程 25 3-2化學氣相沉積系統 26 3-2-1 雙套石英管式反應腔體 26 3-2-2 三區域加熱管狀式高溫爐 27 3-2-3 抽氣及真空系統 27 3-2-4 氣體輸送裝置 28 3-2-5 氣體預混合器 29 3-2-6 反應腔內壓力量測系統 30 3-2-7 反應溫度量測系統 30 3-2-8 氣體流量控制系統 31 3-2-9 廢氣水封處理系統 32 3-3 磁控濺鍍系統 33 3-3-1 電源系統 34 3-3-2 氣體流量控制系統 34 3-4 實驗材料 34 3-4-1 實驗氣體 34 3-4-2 基板材料 37 3-4-3 管件材料 37 3-4-4 濺鍍靶材 38 3-4-5 化學藥品 38 3-5 實驗步驟 40 3-5-1 基板前處理 41 3-5-2 鍍金薄膜 43 3-5-3 成長矽奈米線 44 3-5-4 移除矽奈米線頂端金觸媒 45 3-5-5 氧化硼預沉積 45 3-5-6 硼驅入 47 3-5-7 氧化磷預沉積 48 3-5-8 鍍ITO透明電極 49 3-5-9 鍍鋁電極 51 3-5-10 鍍金電極 52 3-5-11 後處理 53 3-6實驗分析 54 3-6-1表面輪廓儀(Alpha-Step IQ) 54 3-6-2掃描式電子顯微鏡(SEM) 54 3-6-3能量散佈分析儀(EDS or EDX) 56 3-6-4穿透式電子顯微鏡(TEM) 57 3-6-5拉曼光譜儀(Raman Spectroscope) 60 3-6-6紫外光/可見光光譜儀(UV/Visible Spectrophotometer) 61 3-6-7太陽光模擬器與電流/電壓量測系統 62 3-6-8原子力顯微鏡(AFM) 62 第四章 結果與討論 64 4-1以化學氣相沉積法磊晶成長垂直單晶矽奈米線陣列 64 4-1-1退火處理時氫氣壓力對於矽奈米線陣列垂直率的影響 65 4-1-2退火處理時氫氣流率對於矽奈米線陣列垂直率的影響 67 4-1-3金觸媒膜厚對於矽奈米線陣列垂直率的影響 70 4-1-4基板對於矽奈米線陣列垂直率的影響 74 4-1-5成長時間 76 4-1-6垂直矽奈米線陣列的特性分析 77 4-2矽奈米線陣列應用於太陽能電池 82 4-2-1反射率 82 4-2-2轉換效率 85 4-2-3硼驅入製程中溫度及壓力的效應 92 第五章 結論 101 參考文獻 103

    [1] Volker Schmidt, Joerg V. Wittemann, Stephan Senz, and Ulrich Go¨sele, Adv. Mater., 21, 2681–2702(2009)
    [2] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. , 4, 89(1964)
    [3] A. M. Morales, C. M. Lieber, Science, 279, 208(1998)
    [4] 蔡進譯,物理雙月刊,廿七卷,五期(2005)
    [5] 劉建惟、李彥希、戴寶通,矽奈米線太陽能電池之研製與其特性研究,國家奈米元件實驗室
    [6]http://spectrum.ieee.org/semiconductors/design/nanowire-silicon-solar-cell-for-powering-small-circuits
    [7] Zingway Pei, Shu-Tong Chang, Chang-Wei Liu, and Yi-Chan Chen, IEEE ELECTRON DEVICE LETTERS, VOL. 30, 12(2009)
    [8] IBM T.J. Watson Research Center, Solar Energy Materials & Solar Cells 93, 1388–1393(2009)
    [9] Lu Hu and Gang Chen, Nano Lett., 7,11(2007)
    [10] B. M. Kayes, M. A. Filler, M. D. Henry, J. R. Maiolo III, M. D. Kelzenberg, M. C. Putnam, J. M. Spurgeon, K. E. Plass, A. Scherer, N. S. Lewis, H. A. Atwater, RADIAL PN JUNCTION WIRE ARRAY SOLAR CELLS
    [11] Th Stelzner, M Pietsch, G Andr¨a, F Falk, E Ose and S Christiansen, Nanotechnology, 19 , 295203(2008)
    [12] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima J. Rand, APPLIED PHYSICS LETTERS, 91, 233117(2007)
    [13] Oki Gunawan, SupratikGuha, Solar Energy Materials & Solar Cells, 93 , 1388–1393(2009)
    [14] www.docdiamond.com/articles/what-is-diamond.php
    [15]Kittel, Introductions to Solid State Physics 8/e, John Wiley&Sons, Inc., 18
    [16] http://www.el-cat.com/silicon-properties.htm#w1
    [17] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/Figs/122.gif
    [18] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/Figs/135.gif
    [19] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/bandstr.html
    [20] http://www.el-cat.com/silicon-properties.htm#w1
    [21] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html
    [22] www.ami.ac.uk/courses/topics/0203_dbm/index.html
    [23] Y. Civale, L. K. Nanver,1 P. Hadley, E. J. G. Goudena, Aspects of Silicon Nanowire Synthesis by Aluminum-Catalyzed Vapor-Liquid-Solid Mechanism
    [24]Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, Adv.Mater.,15,No.5(2003)
    [25] cnx.org/content/m25614/latest/
    [26] Jacob H. Woodruff,† Joshua B. Ratchford, Irene A. Goldthorpe,
    Paul C. McIntyre, and Christopher E.D. Chidsey, Nano Letters,
    7,6,1637-1642(2007)
    [27]Transene Company,INC.
    [28] www.microchemicals.eu/technical_information
    [29]Jenny Neison, The Physics of Solar Cells, Imperial College Press,1-2
    [30] org.ntnu.no/solarcells/pages/introduction.php
    [31] Jenny Neison, The Physics of Solar Cells, Imperial College Press,9-12
    [32] Tohru Aoyama, Tatsuya Suzuki, Kenichi Arai, Toru Tatsumi, Journal of Crystal Growth, 157, 323-326(1995)
    [33] serc.carleton.edu/.../electroninteractions.html
    [34] http://en.wikipedia.org/wiki/File:EDX-scheme.svg
    [35] www.unl.edu/ncmn/cfem/microscopy/TEM.shtml
    [36] www.answers.com/topic/raman-spectroscopy
    [37] H. Scheel1, S. Khachadorian1, M. Cantoro2, A. Colli2, A. C. Ferrari2, and C. Thomsen1, phys. stat. sol. (b), 245, 10, 2090–2093 (2008)
    [38] Bibo Li, Dapeng Yu, and Shu-Lin Zhang, PHYSICAL REVIEW B,59,3,1645(1999)
    [39] Takahiro Kawashima, Goh Imamura, Tohru Saitoh, Kazunori Komori,
    Minoru Fujii, and Shinji Hayashi, J. Phys. Chem. C, 111,
    15160-15165(2007)
    [40] Anna Fontcuberta i Morral, Jordi Arbiol, Joan Daniel Prades, Albert Cirera, and Joan Ramon Morante, Adv. Mater., 19, 1347–1351 (2007)
    [41] http://www.nanoscience.com/education/afm.html
    [42] Takayuki Aoyama, Ken-ichi Goto, Tatsuya Yamazaki, Takashi Ito, J. Vac. Sci. Technol. A 14, 5(1996)
    [43] Emanuela Piscopiello, Leander Tapfer, PHYSICAL REVIEW B, 78, 035305(2008)
    [44] Volker Schmidt, Stephan Senz, and Ulrich Go1sele, Nano Lett., 5, 5 (2005)
    [45] Chien C. Chiu and Seshu B. Desu, Ching Yi Tsai, J. Mater. Res., 8, 10(1993)
    [46] 溫清榕,真空物理及技術上課講義(2009)
    [47] A.N. Goldstein, Appl. Phys. A, 62, 33 37 (1996)

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE