簡易檢索 / 詳目顯示

研究生: 洪婉瑜
Hung, Wan-Yu
論文名稱: 氧化鎳薄膜電晶體之特性研究
Investigating Performance of NiOx Thin Film Transistors
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 磁控式射頻濺鍍系統氧化鎳薄膜薄膜電晶體
外文關鍵詞: Radio frequency magnetron sputtering, nickel oxide, thin film transistor
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所製作之氧化鎳薄膜電晶體由磁控式射頻濺鍍系統(magnetron radio frequency sputtering system)所沉積,因需要有良好的薄膜電晶體特性,故需要有較佳的氧化鎳薄膜,首先利用磁控式射頻濺鍍系統沉積氧化鎳薄膜,藉由調變不同的射頻功率、氣體流量以及熱處理溫度,並利用霍爾量測系統(Hall measurement)與X光繞射分析儀(X-Ray Diffraction, XRD)進行分析,以尋求較佳之氧化鎳薄膜特性。而在分析結果顯示,在腔體壓力為10 mtorr、射頻功率為125 W時,氧氣流量比例在N2:O2 = 10:40 sccm (Opp = 80%),以400oC氧氣熱退火處理,所得到的濃度為2.32×1017 cm-3,電阻率值為4.23×102 Ω-cm,載子遷移率為最高,其值為7.42×10-1 cm2/V-s,而在XRD分析中薄膜結晶性為最佳,晶粒大小為18.9 nm。之後進行不同氧流量比例之氧化鎳薄膜電晶體之製作並分析其特性,結果也顯示以氧流量比例N2:O2=10:40 sccm (Opp = 80%)為通道層之條件特性為最佳,在VGS= -4 V下,飽和汲源極電流約為3.7 μA,次臨界斜率S.S值約為0.38 V/decade,場效載子遷移率為0.329 cm2/V-s,電流開關比為104。

    The nickel oxide based thin film transistor fabricated in this research was deposited by magnetron radio frequency sputtering system. Due to the need of better thin film transistor performance, we need the nickel oxide thin film with better electrical property. In the beginning of the experiment, we deposited the nickel oxide thin film by the radio frequency magnetron sputtering system via varying the radio frequency power, gas flow and post-deposition annealing. In order to have better nickel oxide thin film property, we did the Hall and X-ray diffraction measurement to analyze it. The measurement result showed that optimized thin film property produced at deposition condition with 10mtorr working pressure, 125W radio frequency power, gas flow ratio with N2: O2= 10: 40 sccm (Opp = 80%) and 400oC post-deposition annealing by oxygen. And the Hall measurement showed the thin film with 2.32× 1017 cm-3 in carrier concentration, 4.23× 102 Ω-cm in resistivity and the highest carrier mobility with 7.42×10-1 cm2/V-s. Meanwhile in the XRD measurement, we also got the optimal thin film crystallinity with 18.9 nm grain size in average. Later we started analyzing the nickel oxide based thin film transistor fabrication by varying the oxygen flow ratio. The result showed that optimized transistor performance with saturation current 3.7 μA, subthreshold swing 0.38 V/decade, field effect mobility 0.329 cm2/V-s and current on-to-off ratio with 104 and this produced also under oxygen flow ratio with N2: O2= 10: 40 sccm (Opp = 80%).

    摘要 I Abstract III 誌謝 V 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 薄膜電晶體發展及近況 1 1.2 研究動機與目的 2 參考文獻 4 第二章 原理 9 2.1 物理氣相沉積系統 9 2.1.1 物理氣相沉積方式 9 2.1.2 磁控式物理氣相沉積濺鍍系統 9 2.1.3 濺鍍原理 10 2.2 氧化鎳之基本性質 11 2.2.1 氧化鎳之基本特性 11 2.2.2 氧化鎳之導電機制 13 2.3 薄膜電晶體之工作原理 14 2.4 薄膜電晶體之元件特性 17 2.4.1 臨界電壓 17 2.4.2 場效移動率 18 2.4.3 元件開關比 19 2.4.4 次臨界擺幅 19 參考文獻 21 第三章 實驗流程 26 3.1 p型氧化鎳薄膜穩定度之研究 26 3.2 p型氧化鎳薄膜電晶體之元件製作 28 3.2.1 p型氧化鎳薄膜電晶體之元件結構 28 3.2.2 p型氧化鎳薄膜電晶體之元件製作流程 28 3.2.3 p型氧化鎳薄膜電晶體特性量測 37 參考文獻 38 第四章 實驗結果與討論 39 4.1 p型氧化鎳薄膜之量測 39 4.1.1 霍爾量測分析射頻功率對氧化鎳薄膜之影響 39 4.1.2 XRD分析射頻功率對氧化鎳薄膜之影響 45 4.1.3 霍爾量測分析氣體流量對氧化鎳薄膜之影響 47 4.1.4 XRD分析氧流量比例對氧化鎳薄膜之影響 49 4.1.5 EDS分析氧流量比例對氧化鎳薄膜之影響 51 4.2 不同氧流量比例之薄膜電晶體特性比較 54 參考文獻 58 第五章 結論 59

    [1] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-Based Transparent Thin-Film Transistors”, Appl. Phys. Lett., vol. 82, pp. 733-735, (2003).
    [2] Q. J. Yao, D. J. Li, “Fabrication and Property Study of Thin Film Transistor Using RF Sputtered ZnO as Channel Layer”, J. Non-Cryst. Solids, vol. 351, pp. 3191-3194, (2005).
    [3] J. Oark, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, “High-Performance Amorphous Gallium Indium Zinc Thin-Film Transistors Through N2O Plasma Passivation”, Appl. Phys. Lett., vol. 93, 053505, (2008).
    [4] M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K.Nomura, T. Kamiya, and H. Hosono, “Fast Thin-Film Transistor Circuits Based on Amorphous Oxide Semiconductor”, IEEE Electron Device Lett., vol. 28, pp. 273-275 (2007).
    [5] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. Ko Park, C. S. Hwang, and R. Martins, “Transparent P-Type SnOx Thin Film Transistors Produced by Reactive RF Magnetron Sputtering Followed by Low Temperature Annealing”, Appl. Phys. Lett., vol. 97, 052105, (2010).
    [6] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Sputtering Formation of P-Type SnO Thin-Film Transistors on Glass Toward Oxide Complimentary Circuits”, Appl. Phys. Lett., vol. 97, 072111, (2010).
    [7] E. Fortunato,V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Gonçalves, S. H. Ko Park, C. S. Hwang, and R. Martins, “Thin-Film Transistors Based on P-Type Cu2O Thin Films Produced at Room Temperature”, Appl. Phys. Lett., vol. 96, 192102, (2010).
    [8] V. Figueiredo, E. Elangovan, R. Barros, J. V. Pinto, T. Busani, R. Martins, and E. Fortunato, “P-Type Cu2O Films Deposited at Room Temperature for Thin-Film Transistors”, J. Disp. Technol., vol. 8, pp. 41-47, (2012).
    [9] S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang, “Organic Solar Cells Employing Magnetron Sputtered P-type Nickel Oxide Thin Film as the Anode Buffer Layer”, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 2332-2336, (2010).
    [10] F. Hao, H. Lin, X.Li, J. Zhang, Y. Z. Liu, and J. B. Li, “Enhancement of Photocurrent of Dye-Sensitized Solar Cell by Composite Liquid Electrolyte Including NiO Nanosheets”, J. Nanosci. Nanotechnol., vol. 10, pp. 7390-7393, (2010).
    [11] Z. Y. Wang, S. H. Lee, D. H. Kim, J. H. Kim, and J. G. Park, “Effect of NiOx Thin Layer Fabricated by Oxygen-Plasma Treatment on Polymer Photovoltaic Cell”, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 1591-1596, (2010).
    [12] S. Uehara, S. Sumikura, E. Suzuki, and S. Mori, “Retardation of Electron Injection at NiO/Dye/Electrolyte Interface by Aluminum Alkoxide Treatment”, Energy Environ. Sci., vol. 3, pp. 641-644, (2010).
    [13] P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, and L. C. Sun, “High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores”, Adv. Mater., vol. 21, pp. 2993-2996, (2009).
    [14] I. Chary, A. Chandolu, B. Borisov, V. Kuryatkov, S. Nikishin, and S, M. Holtz, “Influence of Surface Treatment and Annealing Temperature on the Formation of Low-Resistance Au/Ni Ohmic Contacts to p-GaN”, J. Electron. Mater., vol. 38, pp. 545-550, (2009).
    [15] S. Kim, “Effect of Interfacial Properties of p-GaN /Sputter-Deposited NiAg-Based Electrode on Optical Properties of Vertical GaN-Based LEDs”, Electrochem. Solid State Lett., vol.12, pp. H441-H444, (2009).
    [16] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced Output Power of InGaN-GaN Light-Emitting Diodes with High-Transparency Nickel-Oxide-Indium-Tin-Oxide Ohmic Contacts”, IEEE Photo. Technol. Lett., vol. 15, pp. 646-648, (2003).
    [17] S. Woo, J. Kim, G. Cho, K. Kim, H. Lyu, and Y. Kim, “Influence of Nickel Oxide Nanolayer and Doping in Organic Light-Emitting Devices”, J. Ind. Eng. Chem., vol. 15, pp. 716-718, (2009).
    [18] J. Y. Chun, J. W. Han, and D. S. Seo, “Application of High Work Function Anode for Organic Light Emitting Diode”, Mol. Cryst. Liquid Cryst., vol. 514, pp. 445-451, (2009).
    [19] H. C. Im, D. C. Choo, T. W. Kim, J. H. Kim, J. H. Seo, and Y. K. Kim, “Highly Efficient Organic Light-Emitting Diodes Fabricated Utilizing Nickel-Oxide Buffer Layers between the Anodes and the Hole Transport Layers”, Thin Solid Films, vol. 515, pp. 5099-5102, (2007).
    [20] A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, and A. Hosny, “Structure, Optical and Electrochromic Properties of NiO Thin Films”, Physica B, vol. 405, pp. 3412-3420, (2010).
    [21] A. C. Sonavane, A. I. Inamdar, H. P. Deshmukh, and P. S. Patil, “Multicoloured Electrochmic Thin Films of NiO/PANI”, J. Phys. D-Appl. Phys., vol. 43, 315102, (2010).
    [22] X. C. Lou, X. J. Zhao, Y. L. Xiong, and X. T. Sui, “The Influence of Annealing on Electrochmic Properties of Al-B-NiO Thin Films Prepared by Sol-gel”, J. Sol-Gel Sci. Technol., vol. 54, pp. 43-48, (2010).
    [23] G. J. Shyju, S. D. D. Roy, and C. Sanjeeviraja, “Review on Indium Zinc Oxide Films: Material Properties and Preparation Techniques”, Mater. Sci. Forum, vol. 671, pp. 21-45, (2009).
    [24] S. Nagarani, M. Jayachandran, and C. Sanjeeviraja, “Review on Gallium Zinc Oxide Films: Material Properties and Preparation Techniques”, Mater. Sci. Forum, vol. 671, pp. 47-68, (2009).
    [25] N. Ohshima, M. Nakada, and Y. Tsukamoto, “Structural and Magnetic Properties of Ni-O/Ni-Fe Bilayer Films”, Jpn. J. Appl. Phys., vol. 35, pp. L1585-L1588, (1996).
    [26] O. Kohmoto, H. Nakagawa, F. Ono, and A. Chayahara, “Ni-Defective Value and Resistivity of Sputtered NiO films”, J. Magn. Magn. Mater., vol. 226-230, pp. 1627-1629, (2001).
    [27]黃國倫, “銅添加對氧化鎳薄膜透光性及導電性之影響”, 國立成功大學材料科學及工程學系碩士論文, (2006)
    [28] E. Fujii, A. Tomozawa, H. Torii, and R. Takayama, “Preferred Orientations of NiO Films Prepared by Plasma-Enhanced Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 35, pp. L328-L330, (1996).
    [29] M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamda, “Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere” , Jpn. J. Appl. Phys., vol. 33, pp. 6656-6662, (1994)
    [30] H. Kumagai, M. Matsumoto, K. Toyoda, and M. Oobara, “Preparation and Characteristics of Nickel Oxide Thin Film by Controlled Growth with Sequential Surface Chemical Reactions”, J. Mater. Sci. Lett., vol. 15, pp. 1081-1803, (1996)
    [31] S. Woo, J. Kim, G. Cho, K. Kim, H. Lyu, and Y. Kim, “Influence of Nickel Oxide Nanolayer and Doping in Organic Light-Emitting Devices”, J. Ind. Eng. Chem., vol. 15, pp. 716-718, (2009).
    [32] S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang, ”Organic Solar Cells Employing Magnetron Sputtered P-Type Nickel Oxide Thin Film as the Anode Buffer Layer”, Sol. Energy Mater. Sol. Cells., vol. 94, pp. 2332-2336, (2010).
    [33] S. M. Tan, S. P. Chai, W. W. Liu, and A. R. Mohamed, “Effects of FeOx, CoOx, and NiO Catalysts and Calcination Temperatures on the Synthesis of Single-Walled Carbon Nanotubes Through Chemical Vapor Deposition of Methane”, J. Alloy. Compd., vol. 477, pp. 785-788, (2009).
    [34] I. A. Garduno, J. C. Alonso, M. Bizarro, R. Ortega, L. Rodriguez-Fernandez, and A. Ortiz, “Optical and Electrical Properties of Lithium Doped Nickel Oxide Films Deposited by Spray Pyrolysis onto Alumina Substrates”, J. Cryst. Growth, vol. 312, pp. 3276-3281, (2010).
    [35] V. V. Plashnitsa, V. Gupta, and N. Miura, “Mechanochemical Approach for Fabrication of A Nano-Structured NiO-Sensing Electrode Used in A Zirconia-based NO2 Sensor”, Electrochim. Acta , vol. 55, pp. 6941-6945, (2010).
    [36] J. H. Li, C. C. Wang, C. J. Huang, Y. F. Sun, W. Z. Weng, and H. L. Wan, “Mesoporous Nickel Oxides as Effective Catalysts for Oxidative Dehydrogenation of Propane to Propene”, Appl. Catal. A-Gen., vol. 382, pp. 99-105, (2010).
    [37] N. Brilis, C. Foukaraki, E. Bourithis, D. Tsamakis, A. Giannoudakos, M. Kornpitsas, T. Xenidou, and A. Boudouvis, “Development of NiO-based Thin Film Structures as Efficient H2 Gas Sensors Operating at Room Temperatures”, Thin Solid Films, vol. 515, pp. 8484-8489, (2007)
    [38] E. Fortunato, P. Barquinha and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances”, Adv. Mater., vol. 24, pp. 2945-2986, (2012).
    [39] T. C. Chen, T. C. Chang, T.Y. Hsieh, C .T. Tsai, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Light-Induced Instability of an InGaZnO Thin Film Transistor with and without SiOx Passivation Layer Formed by Plasma-Enhanced-Chemical-Vapord Deposition”, Appl. Phys. Lett., vol. 97, 192103, (2010).
    [40] C. N. Chen and J. J. Huang, “Characteristics of Thin-Film Transistors Based on Silicon Nitride Passivation by Excimer Laser Direct Patterning”, Thin Soild Films, vol. 529, pp. 449-453, (2013).
    [41] X. Xu, L. Feng, S. He, Y. Jin, and X. Guo, “Solution-Processed Zinc Oxide Thin-Film Transistors with A Low-Temperature Polymer Passivation Layer”, IEEE Electron Dev. Lett., vol. 33, pp. 1420-1422, (2012).
    [42] J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, X. Y. Jiang, and Z. L. Zhang, “Effect of Reactive Sputtered SiOx Passivation Layer on the Stability of InGaZnO Thin Film Transistors”, Vacuum, vol. 86, pp. 1840-1843, (2012).
    [43] M. Li, L. Lan, M. Xu, H. Xu, D. Luo, N. Xiong, and J. Peng, “Impact of Deposition Temperature of the Silicon Oxide Passivation on the Performance of Indium Zinc Oxide Thin-Film Transistors”, Jpn. J. Appl. Phys., vol. 51, 076501, (2012).
    [44] K. Nomura, T. Kamiya, and H. Hosono, “Stability and High-Frequency Operation of Amorphous In–Ga–Zn–O Thin-Film Transistors with Various Passivation Layers”, Thin Solid Films, vol. 520, pp. 3778-3782, (2012).
    [45] 施敏,“半導體元件物理與製作技術”, 國立交通大學出版社, (2008).
    [46] 陳璟鋒,P 型氧化鎳薄膜之製備與其光性、電性及材料特性之研究,國立成功大學材料科學及工程學系碩士論文(2004)。
    [47] H. Shin, S. B. Choi, C. J. Yu, and J. Y. Kim, “Characterization of Crystalline Structure and Morphology of NiO Thin Films”, J. Nanosci. Nanotechnol., vol. 11, pp. 4629-4632, (2011).
    [48] 莊鑫堅, P型電極氧化鎳薄膜之製備與其電性及光性之探討,國立成功大學材料科學及工程學系碩士論文(2003)。
    [49] S. Nandy, B. Saha, M. K. Mitra, and K. K. Chattopadhyay, “Effect of Oxygen Partial Pressure on the Electrical and Optical Properties of Highly (200) Oriented P-Type Ni1–xO Films by DC Sputtering”, J. Mater. Sci., vol. 42, pp. 5766-5772, (2007).

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE