簡易檢索 / 詳目顯示

研究生: 王星皓
Wang, Sing-Hao
論文名稱: 應用於軟體無線電具雜訊抑制之寬頻接收機
A Wideband Receiver with Noise Cancellation for Software-Defined Radio Applications
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 100
中文關鍵詞: 軟體無線電接收器前端N徑濾波器雜訊抑制
外文關鍵詞: SDR, receiver front-end, N-path filter, noise cancellation
相關次數: 點閱:73下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用於軟體無線電(SDR)基於N徑濾波器具雜訊抑制之接收器前端電路,應用工作頻率範圍由433百萬赫茲至24億赫茲。
    低雜訊放大器(LNA)以共閘極(CG)放大器實現,其中再利用放大器的電流源,形成一供雜訊抑制的回授迴路。一前授N徑濾波器與一主動混頻器由25%責任週期脈波產生器驅動,其中N徑濾波器將負載的低通響應轉移至射頻提供窄頻的阻抗匹配。此外,25%責任週期脈波由一組除頻器產生,輸出的 I/Q 訊號由兩組雙端轉單端輸出緩衝級推動至輸出。原型電路晶片由台積電90奈米 1P9M 金氧互補式半導體製程實現。由模擬結果得知,在考慮的操作頻段下,主電路提供 20.9分貝至22.4分貝的轉移增益。並且由量測結果得知,雜訊指數(NF)為6.8分貝至8.4分貝。主電路的輸入三階截止點(IIP3)為 -8.5 dBm。接收器前段電路在1.2伏特的電源供給下,僅消耗2.62毫瓦。25%責任週期脈波產生器的功率消耗,隨著操作頻率由433百萬赫茲至24億赫茲,消耗功率由8.1毫瓦至18.5毫瓦。

    This thesis proposes a noise-cancellation receiver front-end based on an N-path filter for software-defined radio (SDR) applications from 433 to 2400 MHz.
    The low noise amplifier (LNA) utilizes a differential common gate (CG) amplifier in which the tail current re-uses as a feedback loop for noise cancellation. A feedforward N-path filter and an active mixer driven by a 25% duty-cycle clock generator are stacked to transfer low-pass response to RF for narrow-band input matching. In addition, 25% duty-cycle clocks are generated by a frequency divider. Two differential-to-single output buffers delivery I/Q output. The prototype chip is implemented in TSMC 90 nm 1P9M CMOS process. The simulation results show that the conversion gain of the core circuit varies from 20.9 to 22.4 dB over the considered bands. Moreover, the measured noise figure (NF) ranges from 6.8 to 8.4 dB. The input third-order intercept point (IIP3) is -8.5 dBm. The core circuit of receiver front-end consumes 2.62 mW from a 1.2 V supply. The 25% duty-cycle generator consumes 8.1 to 18.5 mW within LO frequency from 433 to 2400 MHz.

    List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Motivation 2 1.1 Targets 4 1.2 Thesis Organization 4 Chapter 2 Literature Review 5 2.1 Design Considerations for SDR Front-End 5 2.1.1 Matching and S Parameter 5 2.1.2 Wideband Matching 7 2.1.3 Noise Figure 10 2.1.4 Distortion 11 2.1.5 Interference 12 2.2 Mixer First Receiver 14 2.3 Noise Cancellation Techniques 18 2.4 Frequency Translated Noise Cancellation Techniques 19 Chapter 3 Proposed Receiver Front-End 25 3.1 Proposed Multi-Path Feedback Receiver Front-End 25 3.2 Design of Multi-Path Feedback Receiver Front-End 26 3.2.1 Input Impedance Matching of Front-End 27 3.2.2 Out-of-Band Rejection 34 3.2.3 Conversion Gain 35 3.2.4 Noise Analysis 36 3.2.5 Entire Front-End Circuit 42 3.2.6 Noise Figure Comparison 48 3.2.7 Output Load 54 3.2.8 Switch turn-on resistance 55 3.2.9 25% Duty-Cycle Generator 57 3.2.10 Output Buffer 59 Chapter 4 Simulation Results 60 4.1 Simulation Environment Setup 60 4.2 Post-Layout Simulation Results 60 4.3 Simulation Results with Device Mismatch and Non-Ideal Clock 70 Chapter 5 Measurement Results 72 5.1 Measurement Setup 72 5.1.1 Conversion Gain Measurement Setup 74 5.1.2 Linearity Measurement Setup 74 5.1.3 NF Measurement Setup 76 5.2 Measurement Results 76 Chapter 6 Conclusion and Future Works 85 6.1 Conclusion 85 6.2 Future Works 85 Appendix 87 References 99

    [1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, Feb. 2014.
    [2] Y. H. Lin, Q. Wang, J. S. Wang, L. Shao, and J. Tang, “Wireless IoT Platform Based on SDR Technology,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, 2013, pp. 2245–2246.
    [3] Y. Park, S. Kuk, I. Kang, and H. Kim, “Overcoming IoT Language Barriers Using Smartphone SDRs,” IEEE Trans. Mob. Comput., vol. 16, no. 3, pp. 816–828, Mar. 2017.
    [4] “Introduction to SDR - Wireless Innovation Forum.” [Online]. Available: http://www.wirelessinnovation.org/index.php?option=com_content&view=article&id=63:Introduction_to_SDR&catid=19:site-content&Itemid=77. [Accessed: 24-Dec-2017].
    [5] A. Mirzaei, H. Darabi, J. C. Leete, and Y. Chang, “Analysis and Optimization of Direct-Conversion Receivers With 25% Duty-Cycle Current-Driven Passive Mixers,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 57, no. 9, pp. 2353–2366, Sep. 2010.
    [6] C. Andrews and A. C. Molnar, “Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 57, no. 12, pp. 3092–3103, Dec. 2010.
    [7] A. Ghaffari, E. A. M. Klumperink, M. C. M. Soer, and B. Nauta, “Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 998–1010, May 2011.
    [8] A. Mirzaei, H. Darabi, and D. Murphy, “Architectural Evolution of Integrated M-Phase High-Q Bandpass Filters,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 59, no. 1, pp. 52–65, Jan. 2012.
    [9] C. Andrews, L. Diamente, D. Yang, B. Johnson, and A. Molnar, “A Wideband Receiver With Resonant Multi-Phase LO and Current Reuse Harmonic Rejection Baseband,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1188–1198, May 2013.
    [10] D. Murphy et al., “A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2943–2963, Dec. 2012.
    [11] F. Lin, P. I. Mak, and R. P. Martins, “An RF-to-BB-Current-Reuse Wideband Receiver With Parallel N-Path Active/Passive Mixers and a Single-MOS Pole-Zero LPF,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2547–2559, Nov. 2014.
    [12] C. M. Thomas, “Advances in N-path Filtering for Broadband Tunable and Interference Robust Reception,” UC San Diego, 2015.
    [13] H. Abdelsalam, E. Hegazi, H. Mostafa, and Y. Ismail, “On the Use of a Programmable Front-end for Multi-band/Multi-standard Applications,” Microelectron J, vol. 49, no. C, pp. 1–9, Mar. 2016.
    [14] R. Sorrentino, G. Bianchi, and K. Chang, Microwave and RF Engineering, 1 edition. Chichester, West Sussex, U.K. ; Hoboken, N.J: Wiley, 2010.
    [15] K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microw. Theory Tech., vol. 13, no. 2, pp. 194–202, Mar. 1965.
    [16] B. G. Perumana, J. H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1218–1225, May 2008.
    [17] W. Zhuo et al., “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
    [18] B. Razavi, RF Microelectronics, 2 edition. Upper Saddle River, NJ: Prentice Hall, 2011.
    [19] J.-S. Goo, H.-T. Ahn, D. J. Ladwig, Z. Yu, T. H. Lee, and R. W. Dutton, “A noise optimization technique for integrated low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 994–1002, Aug. 2002.
    [20] E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari, and E. Sanchez-Sinencio, “A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3154–3161, Dec. 2011.
    [21] S. Woo, W. Kim, C.-H. Lee, K. Lim, and J. Laskar, “A 3.6mW differential common-gate CMOS LNA with positive-negative feedback,” in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 218-219,219a.
    [22] M. Mikhemar, D. Murphy, A. Mirzaei, and H. Darabi, “A Cancellation Technique for Reciprocal-Mixing Caused by Phase Noise and Spurs,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3080–3089, Dec. 2013.
    [23] T. C. Weigandt, Low-phase-noise, low-timing-jitter design techniques for delay cell based VCOs and frequency synthesizers. Berkeley : Electronics Research Laboratory, College of Engineering, University of California, 1998.
    [24] J. Yin, P. I. Mak, F. Maloberti, and R. P. Martins, “A 0.003mm2 1.7-to-3.5GHz dual-mode time-interleaved ring-VCO achieving 90-to-150kHz 1/f3 phase-noise corner,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 48–49.
    [25] J. A. Weldon et al., “A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 2003–2015, Dec. 2001.
    [26] B. van Liempd et al., “A 0.9 V 0.4 -6 GHz Harmonic Recombination SDR Receiver in 28 nm CMOS With HR3/HR5 and IIP2 Calibration,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1815–1826, Aug. 2014.
    [27] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
    [28] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.
    [29] J. Zhou, A. Chakrabarti, P. R. Kinget, and H. Krishnaswamy, “Low-Noise Active Cancellation of Transmitter Leakage and Transmitter Noise in Broadband Wireless Receivers for FDD/Co-Existence,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 3046–3062, Dec. 2014.
    [30] E. A. M. Klumperink and B. Nauta, “Software defined radio receivers exploiting noise cancelling: A tutorial review,” IEEE Commun. Mag., vol. 52, no. 10, pp. 111–117, Oct. 2014.
    [31] “The Fourier Series.” [Online]. Available: http://lpsa.swarthmore.edu/Fourier/Series/WhyFS.html. [Accessed: 31-Mar-2018].
    [32] S. Haykin and B. V. Veen, Signals and Systems, 2nd Edition, 2 edition. New York: Wiley, 2002.
    [33] M. C. M. Soer, E. A. M. Klumperink, P. T. de Boer, F. E. van Vliet, and B. Nauta, “Unified Frequency-Domain Analysis of Switched-Series-$RC$ Passive Mixers and Samplers,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 57, no. 10, pp. 2618–2631, Oct. 2010.
    [34] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan. 2000.
    [35] H. Hedayati, W. F. A. Lau, N. Kim, V. Aparin, and K. Entesari, “A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1148–1164, May 2015.
    [36] H. Wang, P. Jiang, T. Mo, and J. Zhou, “A low-noise WCDMA transmitter with 25%-duty-cycle LO generator in 65nm CMOS,” in 2011 9th IEEE International Conference on ASIC, 2011, pp. 1034–1037.
    [37] T. Charania, A. Opal, and M. Sachdev, “Analysis and Design of On-Chip Decoupling Capacitors,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 21, no. 4, pp. 648–658, Apr. 2013.
    [38] K. B. Östman et al., “A 2.5-GHz Receiver Front-End With Q-Boosted Post-LNA N-Path Filtering in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2071–2083, Sep. 2014.
    [39] D. H. Mahrof, E. A. M. Klumperink, M. S. O. Alink, and B. Nauta, “A receiver with in-band IIP3 >20dBm, exploiting cancelling of OpAmp finite-gain-induced distortion via negative conductance,” in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2013, pp. 85–88.
    [40] S. Youssef, R. van der Zee, and B. Nauta, “Active feedback receiver with integrated tunable RF channel selectivity, distortion cancelling, 48dB stopband rejection and >+12dBm wideband IIP3, occupying <0.06mm2 in 65nm CMOS,” in 2012 IEEE International Solid-State Circuits Conference, 2012, pp. 166–168.
    [41] B. Li and K. P. Pun, “A High Image-Rejection SC Quadrature Bandpass DSM for Low-IF Receivers,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 61, no. 1, pp. 92–105, Jan. 2014.
    [42] I. Madadi, M. Tohidian, and R. B. Staszewski, “Analysis and Design of I/Q Charge-Sharing Band-Pass-Filter for Superheterodyne Receivers,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 62, no. 8, pp. 2114–2121, Aug. 2015.
    [43] D. B. Leeson, “Oscillator phase noise: A 50-year retrospective,” in 2015 Joint Conference of the IEEE International Frequency Control Symposium the European Frequency and Time Forum, 2015, pp. 332–337.
    [44] A. Mostajeran, M. S. Bakhtiar, and E. Afshari, “A 2.4GHz VCO with FOM of 190dBc/Hz at 10kHz-to-2MHz offset frequencies in 0.13 um CMOS using an ISF manipulation technique,” in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1–3.
    [45] Z. Ru, E. A. M. Klumperink, G. J. M. Wienk, and B. Nauta, “A software-defined radio receiver architecture robust to out-of-band interference,” in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 230-231,231a.
    [46] M. M. Abdul-Latif and E. Sanchez-Sinencio, “Low Phase Noise Wide Tuning Range N-Push Cyclic-Coupled Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1278–1294, Jun. 2012.
    [47] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [48] C. Zhai, J. Fredenburg, J. Bell, and M. P. Flynn, “An N-path filter enhanced low phase noise ring VCO,” in 2014 Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1–2.
    [49] C. Zhai, Building Blocks for Sampling and Digitization in High-speed Communication Systems. 2017.
    [50] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
    [51] Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, “An Ultra-Low-Power Injection Locked Transmitter for Wireless Sensor Networks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1740–1748, Aug. 2006.
    [52] H.-C. Chang, X. Cao, U. K. Mishra, and R. A. York, “Phase noise in coupled oscillators: theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 604–615, May 1997.
    [53] J. G. Maneatis and M. A. Horowitz, “Precise delay generation using coupled oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273–1282, Dec. 1993.
    [54] L. Ke, “Design and analysis of high performance low noise oscillators and phase lock loops,” phd, University of Southampton, 2010.
    [55] R. J. Betancourt-Zamora and T. H. Lee, “CMOS VCOs for Frequency Synthesis in Wireless Biotelemetry,” in Proceedings of the 1998 International Symposium on Low Power Electronics and Design, New York, NY, USA, 1998, pp. 91–94.
    [56] R. J. Betancourt-Zamora, Injection-locked ring oscillator frequency dividers. 2005.

    下載圖示 校內:2023-05-22公開
    校外:2023-05-22公開
    QR CODE