簡易檢索 / 詳目顯示

研究生: 傅韋翔
Fu, Wei-Xiang
論文名稱: 不同轉印層數條件下石墨烯量子點之光學以及電學性質研究
Study for the electrical and optical properties of the specimens with graphene quantum dots prepared by different number of wet transfer
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 111
中文關鍵詞: 石墨烯量子點化學氣相沉積法溼式轉移法類石墨材料
外文關鍵詞: graphene quantum dots, chemical vapor deposition, wet transfer method, graphite-like material
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中藉由化學氣相沉積法(Chemical Vapor Deposition, CVD)在銅箔表面上沉積石墨烯量子點(Graphene Quantum Dots, GQDs),藉由不同溼式轉移(Wet transfer method)次數來改善玻璃表面上石墨烯量子點的密度與均勻度。本實驗中的參數分別為通入甲烷氣體的時間、流率以及溼式轉移的次數,最後得到最佳的光學以及電學性質的條件。本研究中無論經過多少次溼式轉移,石墨烯量子點皆為(110)的晶格取向。由拉曼光譜實驗中可以得知在不同溼式轉移次數下,驗證出本實驗中石墨烯量子點為類石墨材料(graphite-like material)。在不同溼式轉移次數下拉曼光譜中之G-band與石墨烯量子點表面密度成正比。跳躍缺陷(Hopping defect)與邊界缺陷(Edge defect)都是屬於石墨烯量子點中的缺陷。而拉曼光譜中之D-band代表著缺陷強度,此強度會隨著溼式轉移次數增加而下降。隨著溼式轉移次數增加會造成石墨烯量子點平均粒徑的上升,進而導致氧空缺(oxygen vacancies)的增加,最後造成載子濃度(Carrier concentration)上升以及載子遷移率(Carrier mobility)的下降;而不同溼式轉移次數下電阻率(Resistivity)會與石墨烯量子點表面密度反比。能階則會隨著溼式轉移次數增加而下降,能階的下降造成了在綠光以及紅光波段螢光強度的下降,而平均穿透率會隨著溼式轉移次數增加而下降。而在第2次溼式轉移條件下,石墨烯量子點擁有最低的電阻率以及第二高的穿透率;石墨烯量子點的添加使得表面電阻率相較於沒有添加石墨烯量子點的玻璃基板低。

    In the present study, graphene quantum dots (GQDs) are grown on the copper foil substrate by the chemical vapor deposition (CVD) synthesis. 1~3 wet transfer numbers are then used in the preparations of the GQDs/glass substrates in order to improve the density and uniformity of GQDs via the stacking of multiple layers. The CH4 input time, flow rate, and the number of wet transfer are determined in sequence to obtain the optimum conditions in electrical (resistivity) and optical (transmittance) properties. All particles, irrespective of the number of wet transfer, are identified to be the graphene(110). The multilayered graphene is characteristically close to the graphite-like material. The G-band peak intensity in Raman analyses is varied proportional to the density of GQDs. The hopping and edge defects are identified to be existing in GQDs and the D-band related to the edge defect is lowered by increasing the number of wet transfer. Increasing the wet transfer number can lead to the rise of the mean diameter of GQDs and the amount of oxygen vacancies, thus resulting in the increase of carrier concentration and the drop of carrier mobility. The resistivity varying with the number of wet transfer is inversely proportional to the density of GQDs. Bandgap energy is slightly lowered by increasing the number of wet transfer. A bandgap reduction can bring in the lowering of photoluminescence peak intensities of green and red. The mean transmittance of specimen is slightly lowered by increasing the number of wet transfer. The specimen with 2 wet transfers has the lowest resistivity and the second highest transmittance of these specimens. GQDs can bring in a significant reduction of resistivity compared to the same substrate but without GQD.

    Contents Chapter 1 Introduction 1 1.1 Preface of Graphene Quantum Dots 1 1.2 Literature Review 2 1.3 Research Motivation and Purpose 4 1.4 Thesis Writing Methodology 6 Chapter 2 Basic Theories 7 2.1 Introduction of Graphene Film 7 2.2 Introduction of Graphene Quantum Dots 7 2.3 Preparation Methods for GQDs 8 2.3.1 Top-Down Synthesis Method 8 2.3.2 Bottom-Up Synthesis Method 10 2.4 Introduction of ITO Films 11 2.5 Theories of Measuring Instruments 11 2.5.1 Theory of Transmission Electron Microscopy (TEM) 11 2.5.2 Theory of X-Ray Diffractometer (XRD) 12 2.5.3 Theory of Scanning Electron Microscopy (SEM) 13 2.5.4 Theory of Raman Spectroscopy 14 2.5.3 Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy 15 2.5.4 Theory of Photoluminescence Spectroscopy 16 2.5.5 Theory of Hall Effect 17 Chapter 3 Experimental Details 29 3.1 Main Objective 29 3.2 Pretreatment of Copper Foil Substrate 30 3.3 Preparations of GQDs 31 3.3.1 Growth of GQDs 31 3.3.2 Wet Transfer Method of GQDs 32 3.3.3 Remove the PMMA 32 3.4 Preparation of ITO Substrate 33 3.5 Experimental Instruments 33 3.5.1 Chemical Wet Platform 33 3.5.2 Chemical Vapor Deposition (CVD) System 34 3.5.3 Rapid Thermal Annealing (RTA) System 34 3.5.4 Co-Sputter Deposition System 35 3.5.5 Raman Spectroscopy 36 3.5.6 X-ray Diffractometer (XRD) 36 3.5.7 Scanning Electron Microscopy (SEM) 37 3.5.8 UV-Visible-NIR Spectrophotometer 37 3.5.9 Hall Effect Analyzer 37 3.5.10 Electron Spectroscopy for Chemical Analysis (ESCA) 38 3.5.11 Transmission Electron Microscopy (TEM) 38 Chapter 4 Results and Discussion 51 4.1 Microstructures and Crystalline Directions of GQDs and ITO Substrates 51 4.2 Raman Spectroscopy of GQDs 56 4.3 Optical Properties of GQDs 59 4.4 Electrical Properties and Chemical Bond of GQDs 63 Chapter 5 Conclusions 104 5.1 Conclusion of Experimental Results 104 5.2 Future Works 106 References : 107

    [1] H. Zhu, A. Liu, Y. Xu, F. Shan, A. Li, J. Wang, W. Yang, C. Barrow, J. Liu, Graphene quantum dots directly generated from graphite via magnetron sputtering and the application in thin-film transistors. Carbon, 88 (2015) 225-232.
    [2] K. Rahimi, A. Yazdani, M. Ahmadirad, Graphene quantum dots enhance UV photoresponsivity and surface-related sensing speed of zinc oxide nanorod thin films. Materials & Design, 140 (2018) 222-230.
    [3] Z. Luo, G. Qi, K. Chen, M. Zou, L. Yuwen, X. Zhang, W. Huang, L. Wang, Microwave‐assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white‐light‐emitting diodes. Advanced Functional Materials, 26 (2016) 2739-2744.
    [4] C. Xu, S. Yang, L. Tian, T. Guo, G. Ding, J. Zhao, J. Sun, J. Lu, Z. Wang, Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots. Applied Physics Express, 10 (2017) 032102.
    [5] C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, N. Yuan, J. Ding, G. Ding, Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence. Journal of Materials Chemistry C, 3 (2015) 8810-8816.
    [6] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced Materials, 22 (2010) 734-738.
    [7] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, Graphene quantum dots derived from carbon fibers. Nano Letters, 12 (2012) 844-849.
    [8] V.S. Reddy, K. Das, A. Dhar, S. Ray, The effect of substrate temperature on the properties of ITO thin films for OLED applications. Semiconductor Science and Technology, 21 (2006) 1747.
    [9] S.K. Park, J.I. Han, W.K. Kim, M.G. Kwak, Deposition of indium–tin-oxide films on polymer substrates for application in plastic-based flat panel displays. Thin Solid Films, 397 (2001) 49-55.
    [10] F. Qin, J. Tong, R. Ge, B. Luo, F. Jiang, T. Liu, Y. Jiang, Z. Xu, L. Mao, W. Meng, Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 4 (2016) 14017-14024.
    [11] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 306 (2004) 666-669.
    [12] L. Fan, M. Zhu, X. Lee, R. Zhang, K. Wang, J. Wei, M. Zhong, D. Wu, H. Zhu, Direct synthesis of graphene quantum dots by chemical vapor deposition. Particle & Particle Systems Characterization, 30 (2013) 764-769.
    [13] G. Deokar, J. Avila, I. Razado-Colambo, J.-L. Codron, C. Boyaval, E. Galopin, M.-C. Asensio, D. Vignaud, Towards high quality CVD graphene growth and transfer. Carbon, 89 (2015) 82-92.
    [14] I.I. Martin-Fernandez, D. Wang, Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication. Nano Letters, 12 (2012) 6175-6179.
    [15] J. Lee, K. Kim, W.I. Park, B.-H. Kim, J.H. Park, T.-H. Kim, S. Bong, C.-H. Kim, G. Chae, M. Jun, Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Letters, 12 (2012) 6078-6083.
    [16] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324 (2009) 1312-1314.
    [17] T. Fan, W. Zeng, W. Tang, C. Yuan, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, A.J. Epstein, Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters, 10 (2015) 55.
    [18] T.-C. Li, C.-F. Han, K.-C. Hsieh, J.-F. Lin, Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen. Ceramics International, 44 (2018) 6573-6583.
    [19] M. Bayle, N. Reckinger, A. Felten, P. Landois, O. Lancry, B. Dutertre, J.F. Colomer, A.A. Zahab, L. Henrard, J.L. Sauvajol, Determining the number of layers in few‐layer graphene by combining Raman spectroscopy and optical contrast. Journal of Raman Spectroscopy, 49 (2018) 36-45.
    [20] A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (2006) 187401.
    [21] F. Kurdesau, G. Khripunov, A. Da Cunha, M. Kaelin, A. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-crystalline Solids, 352 (2006) 1466-1470.
    [22] J. Ryu, E. Lee, K. Lee, J. Jang, A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence. Journal of Materials Chemistry B, 3 (2015) 4865-4870.
    [23] F. Chen, W. Gao, X. Qiu, H. Zhang, L. Liu, P. Liao, W. Fu, Y. Luo, Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine, 1 (2017) 192-199.
    [24] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 5 (2012) 8869-8890.
    [25] D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry–A European Journal, 18 (2012) 12522-12528.
    [26] R. Liu, D. Wu, X. Feng, K. Müllen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. Journal of the American Chemical Society, 133 (2011) 15221-15223.
    [27] R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics, 83 (1998) 2631-2645.
    [28] J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg's Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy, 109 (2009) 1148-1156.
    [29] R.N. Chauhan, C. Singh, R. Anand, J. Kumar, Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics. International Journal of Photoenergy, 2012 (2012).
    [30] J. Pinto, in, University of Waterloo, 2017.
    [31] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 320 (2008) 1308-1308.
    [32] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 6 (2012) 5102-5110.
    [33] W.-N. Miao, X.-F. Li, Q. Zhang, L. Huang, Z.-J. Zhang, L. Zhang, X.-J. Yan, Transparent conductive In2O3: Mo thin films prepared by reactive direct current magnetron sputtering at room temperature. Thin Solid Films, 500 (2006) 70-73.
    [34] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, 2006.
    [35] T. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Letters, 13 (2013) 1757-1763.
    [36] D. Wang, L. Wang, X. Dong, Z. Shi, J. Jin, Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 50 (2012) 2147-2154.
    [37] K. Habiba, V.I. Makarov, B.R. Weiner, G. Morell, Fabrication of nanomaterials by pulsed laser synthesis. Manufacturing Nanostructures, One Central Press, Manchester, UK, (2014).
    [38] C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21 (2011) 3324-3334.
    [39] K. Chavez, D. Hess, A novel method of etching copper oxide using acetic acid. Journal of The Electrochemical Society, 148 (2001) G640-G643.
    [40] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5 (2011) 6069-6076.
    [41] S.N.M. Bajuri, N.H.A. Halim, M.N.M. Nor, U. Hashim, in: Proc. of 1st National Conference on Electronic Design, 2005, pp. 81-83.
    [42] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, A. Ferrari, Raman spectroscopy of graphene edges. Nano Letters, 9 (2009) 1433-1441.
    [43] A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143 (2007) 47-57.
    [44] K.-I. Sasaki, Y. Tokura, T. Sogawa, The origin of Raman D band: bonding and antibonding orbitals in graphene. Crystals, 3 (2013) 120-140.
    [45] T.-C. Li, B.-S. Nguyen, Y.-C. Chiang, C.-L. Hsiao, J.-F. Lin, Effects of graphene layers in IGZO/graphite-like+ Ni/SiO 2/Si wafer specimens on electrical and optical properties in tribotests. Optical Materials Express, 6 (2016) 3857-3880.
    [46] P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B, 84 (2011) 035433.
    [47] P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri, J. Maultzsch, Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Physical Review B, 87 (2013) 075402.
    [48] K. Park, H.-W. Park, H.S. Shin, J. Bae, K.-S. Park, I. Kang, K.-B. Chung, J.-Y. Kwon, Reliability of crystalline indium–gallium–zinc-oxide thin-film transistors under bias stress with light illumination. IEEE Transactions on Electron Devices, 62 (2015) 2900-2905.
    [49] S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 13 (2017) 10-14.
    [50] L. Cao, M.J. Meziani, S. Sahu, Y.-P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Accounts of Chemical Research, 46 (2012) 171-180.
    [51] L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano, 8 (2014) 6312-6320.
    [52] S. Huh, J. Park, Y.S. Kim, K.S. Kim, B.H. Hong, J.-M. Nam, UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano, 5 (2011) 9799-9806.
    [53] J. Yao, N. Xu, S. Deng, J. Chen, J. She, H.-P.D. Shieh, P.-T. Liu, Y.-P. Huang, Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Transactions on Electron Devices, 58 (2011) 1121-1126.
    [54] M. Boehme, C. Charton, Properties of ITO on PET film in dependence on the coating conditions and thermal processing. Surface and Coatings Technology, 200 (2005) 932-935.
    [55] G. Fang, D. Li, B.-L. Yao, Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode. Journal of Physics D: Applied Physics, 35 (2002) 3096.
    [56] H.-C. Lee, Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions. Applied Surface Science, 252 (2006) 3428-3435.
    [57] T.T.T. Nguyen, O. Renault, B. Aventurier, G. Rodriguez, J.P. Barnes, F. Templier, Analysis of IGZO thin-film transistors by XPS and relation with electrical characteristics. Journal of Display Technology, 9 (2013) 770-774.
    [58] A. Dhar, T. Alford, High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering. APL Materials, 1 (2013) 012102.

    下載圖示 校內:2024-07-11公開
    校外:2024-07-11公開
    QR CODE