簡易檢索 / 詳目顯示

研究生: 邱彥睿
Chiou, Yan-Ruei
論文名稱: 銀奈米漿料熱壓導線之電遷移效應探討
Electromigration Effect of Hot Pressed Interconnects with Silver Nanoparticle Paste
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 銀奈米漿料熱壓殘存孔洞電遷移陰陽極孔隙率變化中段位置孔洞串聯
外文關鍵詞: silver nanoparticle paste, hot-pressing technique, pre-existing pores, electromigration, porosity change of cathode and anode
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用銀奈米漿料熱壓製備銀導線。相較於傳統微影蝕刻及鍍膜製程,以奈米銀漿料熱壓製程之導線會有較多殘存孔洞(孔隙率>5%)。本論文將探討不同熱壓參數對銀導線之孔隙率、電阻之影響,並配合高荷電實驗、中斷實驗探討此多孔結構於通電後之溫度、電阻、表面形貌以及顯微結構之影響。 於不同熱壓參數下(溫度:200℃、250℃,壓力0MPa、5MPa、10MPa),孔隙率及電阻率大致隨溫度及壓力上升而下降,此外機械性質亦隨熱壓溫度提升而有所提升,然而在250℃,5MPa之熱壓條件下,已足夠使奈米銀漿料形成高緻密性(6.2%)以及低電阻率(2.94*10-8Ω-m)之奈米銀導線,因此選用此熱壓參數進行高溫-高荷電測試。
    於溫度200 ℃及105A/cm2電流密度進行高溫-高荷電測試後,可發現250℃,5MPa樣品於中段形成斷路並使線路失效。若觀測剖面顯微結構,可發現靠近失效點附近之孔隙率高達30.5%。此外可觀察到陰極之孔隙率上升5.8%,陽極孔隙率相對下降6.5%。若根據電阻變化可觀測到通電50hr內電阻已有劇烈變化,推測電遷移現象可能已經發生。而從溫度變化可知中段位置形成熱點,也說明了溫度對於原子擴散有所幫助並導致了最終於中段形成失效。
    為了進一步了解銀漿料熱壓導線之電遷移機制,本研究分別進行28、40及200小時之中斷實驗。當通電至28及40hr,可以分別觀察到陰極孔隙率由6.8%上升至7.9%及8.2%,至於陽極孔隙率則由6.5%下降至3.5%及2.9%,說明電遷移效應會對孔洞結構造成影響並且於小於28小時內即開始發生。於通電中期(200hr)可以觀察到中段位置孔洞串聯情形,其孔隙率由8.2%上升至17.4%,而陰陽極之孔隙率變化也更為明顯。整合上述,可觀測到陰陽極的電遷移現象是發生在較早的時間,而隨著通電時間拉長,中段位置會因高電流密度而逐漸失效。此外,中段位置因電阻較高,可觀測到熱點存在,亦不排除有熱遷移甚至熔融現象發生。

    For interconnects fabricated by the hot-pressing technique with silver nanoparticle paste, internal pre-existing pores exist (porosity > 5%). However, internal-pore structure is expected to change during current stressing. Therefore, cross-sectional observation is conducted to investigate the electromigration.
    Paste PM03-α was the silver nanoparticle paste used in this research. Porosity and resistivity of the samples made in different hot press temperatures and pressures were compared, after which the sample with adaptable parameters was selected to conduct current-stressing tests. The parameters of the current stressing test were 105 A/cm2 and 200℃, while the modes of the test included failure and interruption experiments.

    The hot press temperature and pressure of 250℃ and 5MPa were found to be sufficient to fabricate low porosity(6.2%) and low resistivity (2.94*10-8Ω-m) interconnects, so these parameters were selected to conduct the current stressing test. In the failure test, the middle site of the interconnect became the failure site and the hot spot site. In the interruption test, when the current-stressing time passed 28hrs, porosity of the cathode increased from 6.8% to 7.9% while that of the anode decreased from 6.5% to 3.5%. When the current-stressing time passed 200hr, porosity of the middle site increased from 8.2% to 17.4%. Meanwhile, changes in the porosity of the cathode and anode were more distinct.

    To sum up, electromigration occurred earlier in the current-stressing test and made the porosity change in the cathode and anode. As the current-stressing time extended, the porosity in the middle site became higher, as did the current density. Therefore, the middle site had hot spots and melting was also probable.

    Key words: silver nanoparticle paste, hot-pressing technique, pre-existing pores,
    electromigration, porosity change of cathode and anode

    目錄 摘要 I 誌謝 VII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 奈米效應與其應用 3 2-1-1 奈米效應 3 2-1-2 銀奈米顆粒低溫燒結與其應用 4 2-2 奈米粒子熱壓 11 2-2-1 顆粒燒結行為 11 2-2-2 奈米漿料燒結與熱壓 11 2-3 高荷電測試與電遷移效應探討 14 2-3-1 電遷移發展及理論 14 2-3-2 金屬導線抗電遷移能力探討 15 2-3-3 銀薄膜導線高荷電測試 16 2-4 電遷移效應與孔洞變化 25 2-4-1 覆晶封裝錫球於通電過程之孔洞變化 25 2-4-2 電遷移效應對孔洞形狀之影響 26 第三章 實驗方法與步驟 28 3-1 實驗使用材料 28 3-2 實驗流程 28 3-2-1 試片製備 29 3-2-2 熱壓 29 3-2-3 不同熱壓參數製備樣品結構與性質分析 29 3-2-4 高溫-高荷電測試 30 3-2-5 剖面製備與孔隙率觀察 30 3-3 實驗製程及分析儀器 31 3-3-1 掃描式電子顯微鏡(SEM) 31 3-3-2 表面輪廓儀 31 3-3-3 Gatan熱壓機 32 3-3-4 紅外線加熱爐 32 第四章 結果與討論 37 4-1 銀奈米漿料於不同溫度與壓力製成銀導線之性質分析 37 4-1-1 銀奈米漿料熱性質分析 37 4-1-2 銀奈米熱壓後顯微結構觀察 37 4-1-3 銀奈米熱壓結構電阻率及剪切強度分析 40 4-2 兩階段熱壓銀導線高溫-高荷電測試 49 4-2-1 銀導線失效位置及熱點位置再現性 49 4-2-2 銀導線通電過程觀察 49 4-2-3 銀導線失效後表面結構觀察 51 4-2-4 銀導線失效後剖面結構觀察 53 4-3 熱壓銀導線於通電過程孔洞變化及電遷移理論機制探討 65 4-3-1 銀導線於通電過程孔隙率變化 65 4-3-2 銀導線於失效時刻孔洞分布情形及結構緻密度變化 68 4-3-3 銀導線於通電過程孔洞形狀及孔洞方向之變化 70 第五章 結論 81 參考文獻 83

    [1] M. C. Roco, R. S. Williams, and P. Alivisatos, Nanotechnology research directions: IWGN workshop report: vision for nanotechnology in the next decade: Springer Science & Business Media, 2000.
    [2] G. Lövestam, H. Rauscher, G. Roebben, B. S. Klüttgen, N. Gibson, J.-P. Putaud, et al., "Considerations on a definition of nanomaterial for regulatory purposes," Joint Research Centre (JRC) Reference Reports, pp. 80004-1, 2010.
    [3] 賴炤銘 and 李錫隆, "奈米材料的特殊效應與應用," Chemistry (The Chinese Chem. Soc., Taipei), vol. 61, pp. 585-597, 2003.
    [4] G. Guisbiers and L. Buchaillot, "Modeling the melting enthalpy of nanomaterials," The Journal of Physical Chemistry C, vol. 113, pp. 3566-3568, 2009.
    [5] J. Z. Zhang, "Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface," Accounts of chemical research, vol. 30, pp. 423-429, 1997.
    [6] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, "Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine," Accounts of chemical research, vol. 41, pp. 1578-1586, 2008.
    [7] A. P. Weber, M. Seipenbusch, J. Binnig, and G. Kasper, "Influence of the particle morphology on the activity of nanometer platinum aerosol catalysts," Particle & Particle Systems Characterization, vol. 19, pp. 300-305, 2002.
    [8] H. Hofmann, Z. Rahmann, and U. Schubert, Nanostructured materials: Springer Science & Business Media, 2012.
    [9] R. P. Van Duyne, A. J. Haes, and A. D. McFarland, "Nanoparticle optics: sensing with nanoparticle arrays and single nanoparticles," in Proceedings of SPIE, 2003, pp. 197-207.
    [10] K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, et al., "Thermal behavior of silver nanoparticles for low-temperature interconnect applications," Journal of Electronic Materials, vol. 34, pp. 168-175, 2005.
    [11] P. Buffat and J. P. Borel, "Size effect on the melting temperature of gold particles," Physical review A, vol. 13, p. 2287, 1976.
    [12] C. Yang, C. P. Wong, and M. M. Yuen, "Printed electrically conductive composites: conductive filler designs and surface engineering," Journal of Materials Chemistry C, vol. 1, pp. 4052-4069, 2013.
    [13] A. Moisala, A. G. Nasibulin, and E. I. Kauppinen, "The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review," Journal of Physics: condensed matter, vol. 15, p. S3011, 2003.
    [14] J. Chung, S. Han, D. Lee, S. Ahn, C. P. Grigoropoulos, J. Moon, et al., "Nanosecond laser ablation of silver nanoparticle film," Optical Engineering, vol. 52, pp. 024302-024302, 2013.
    [15] S. H. Ko, "Low temperature thermal engineering of nanoparticle ink for flexible electronics applications," Semiconductor Science and Technology, vol. 31, p. 073003, 2016.
    [16] "U. N.-m. ink", <http://www.ulvac.com.vn/en/Products/materials-division/nano-metal-ink>.
    [17] "Self-sintering conductive inks simplify printing of plastic electronics",<http://www.nanowerk.com/spotlight/spotid=21041.php>.
    [18] J. G. Bai, Z. Z. Zhang, J. N. Calata, and G.-Q. Lu, "Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material," IEEE Transactions on components and packaging technologies, vol. 29, pp. 589-593, 2006.
    [19] R. Kisiel and Z. Szczepański, "Die-attachment solutions for SiC power devices," Microelectronics reliability, vol. 49, pp. 627-629, 2009.
    [20] L. Navarro, X. Perpiñà, M. Vellvehi, and X. Jordà, "Silver nano-particles sintering process for the die-attach of power devices for high temperature applications," Ingeniería mecánica, tecnología y desarrollo, vol. 4, pp. 97-102, 2012.
    [21] V. R. Manikam and K. Y. Cheong, "Die attach materials for high temperature applications: A review," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, pp. 457-478, 2011.
    [22] K. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, vol. 51, pp. 517-523, 2011.
    [23] J. H. Lau, "Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration," in Advanced Packaging Materials (APM), 2011 International Symposium on, 2011, pp. 462-488.
    [24] W. Koh, B. Lin, and J. Tai, "Copper pillar bump technology progress overview," in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on, 2011, pp. 1-5.
    [25] "inkjet printing process for kesterite solar cells", <https://phys.org/news/2015-05-inkjet-kesterite-solar-cells.html>.
    [26] "TSVs used by stacked DRAM-dice in combination with a High Bandwidth Memory interface <https://en.wikipedia.org/wiki/Through-silicon_via>.
    [27] K. Takahashi et al., Conference on 3D Architecture for Semiconductors and Packaging,, 2005.
    [28] H. Tanaka, A. Yamamoto, J.-i. Shimoyama, H. Ogino, and K. Kishio, "Strongly connected ex situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering," Superconductor Science and Technology, vol. 25, p. 115022, 2012.
    [29] R. K. Bordia and H. Camacho-Montes, "Sintering: fundamentals and practice," Ceramics and Composites Processing Methods, pp. 1-42, 2012.
    [30] M. Rahaman and M. N. Rahaman, Ceramic processing: CRC press, 2006.
    [31] Z. Zhang and G.-Q. Lu, "Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow," IEEE Transactions on electronics packaging manufacturing, vol. 25, pp. 279-283, 2002.
    [32] T. G. Lei, J. N. Calata, G.-Q. Lu, X. Chen, and S. Luo, "Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area $({>} 100~{
    m mm}^{2}) $ Chips," IEEE Transactions on Components and Packaging Technologies, vol. 33, pp. 98-104, 2010.
    [33] M. Geradin, "Comp," Rend, J, vol. 53, pp. 727-730, 1861.
    [34] W. Seith and H. Wever, "Uber einen neuen Effekt bei der clektrolytischen Uberfiihrung in festen Legierungen," Z. Elektrochem, vol. 59, p. 942, 1953.
    [35] J. R. Black, "Electromigration—A brief survey and some recent results," IEEE Transactions on Electron Devices, vol. 16, pp. 338-347, 1969.
    [36] T. L. Alford and J. W. Mayer, "Book of Abstracts," Materials for advanced Metallization 2000
    [37] M. Hauder, J. Gstöttner, W. Hansch, and D. Schmitt-Landsiedel, "Scaling properties and electromigration resistance of sputtered Ag metallization lines," Applied Physics Letters, vol. 78, pp. 838-840, 2001.
    [38] K. Sieradzki, K. Bailey, and T. Alford, "Agglomeration and percolation conductivity," Applied Physics Letters, vol. 79, pp. 3401-3403, 2001.
    [39] Y. Zeng, L. Chen, Y. Zou, P. Nyugen, J. Hansen, and T. Alford, "Enhancement of Ag electromigration resistance by a novel encapsulation process," Materials letters, vol. 45, pp. 157-161, 2000.
    [40] H. Kim and T. Alford, "Improvement of the thermal stability of silver metallization," Journal of applied physics, vol. 94, pp. 5393-5395, 2003.
    [41] D. Young and A. Christou, "Failure mechanism models for electromigration," IEEE Transactions on Reliability, vol. 43, pp. 186-192, 1994.
    [42] R. Hummel and H. Geier, "Activation energy for electrotransport in thin silver and gold films," Thin Solid Films, vol. 25, pp. 335-342, 1975.
    [43] H. Kim, T. Alford, and D. Allee, "Thickness dependence on the thermal stability of silver thin films," Applied physics letters, vol. 81, pp. 4287-4289, 2002.
    [44] H. Breitling and R. Hummel, "Electromigration in thin silver, copper, gold, indium, tin, lead and magnesium films," Journal of Physics and Chemistry of Solids, vol. 33, pp. 845IN1849-848IN2852, 1972.
    [45] A. Bittnera, S. Kleina, H. Seidela, and U. Schmidb, "Reliability of Ag thin films sputter deposited on silicon and ceramic based substrates," in Proc. of SPIE Vol, 2009, pp. 73620P-1.
    [46] J. N. Calata, G.-Q. Lu, K. Ngo, and L. Nguyen, "Electromigration in sintered nanoscale silver films at elevated temperature," Journal of Electronic Materials, vol. 43, p. 109, 2014.
    [47] B. Geden, "Understand and avoid electromigration (em) & ir-drop in custom ip blocks," Synopsys White Paper, pp. 1-6, 2011.
    [48] E. C. Yeh, W. Choi, K. Tu, P. Elenius, and H. Balkan, "Current-crowding-induced electromigration failure in flip chip solder joints," Applied physics letters, vol. 80, pp. 580-582, 2002.
    [49] H. Ye, C. Basaran, and D. C. Hopkins, "Experimental damage mechanics of micro/power electronics solder joints under electric current stresses," International Journal of Damage Mechanics, vol. 15, pp. 41-67, 2006.
    [50] A. Averbuch, M. Israeli, and I. Ravve, "Electromigration of intergranular voids in metal films for microelectronic interconnects," Journal of Computational Physics, vol. 186, pp. 481-502, 2003.
    [51] B. Bruckschen, H. Seitz, T. Buzug, C. Tille, B. Leukers, and S. Irsen, "Comparing different porosity measurement methods for characterisation of 3D printed bone replacement scaffolds," Biomedizinische Technik, vol. 50, pp. 1609-1610, 2005.
    [52] J. Li, C. M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, "Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles," Journal of Materials Processing Technology, vol. 215, pp. 299-308, 2015.
    [53] S. Shingubara, H. Kaneko, and M. Saitoh, "Electromigration‐induced abrupt changes in electrical resistance associated with void dynamics in aluminum interconnections," Journal of applied physics, vol. 69, pp. 207-212, 1991.
    [54] S.-k. Lin, Y.-c. Liu, S.-J. Chiu, Y.-T. Liu, and H.-Y. Lee, "The electromigration effect revisited: non-uniform local tensile stress-driven diffusion," Scientific Reports, vol. 7, 2017.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE