簡易檢索 / 詳目顯示

研究生: 劉松林
Liu, Sung-Lin
論文名稱: 糖尿病增加登革感染後疾病嚴重度及死亡率的免疫學原因
The immunopathogensis underlying the higher severity and mortality in dengue virus infection in diabetes mellitus
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 56
中文關鍵詞: 登革病毒糖尿病自然免疫細胞激素自然類淋巴細胞
外文關鍵詞: dengue virus, diabetes, cytokines, innate lymphoid cell
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱病毒是一種在血液中生存致病原,患者感染後會導致登革熱。在登革熱病毒初次感染中,病毒通常會導致輕微的登革熱。然而,再次感染不同的登革熱時,登革熱病毒可誘發危及生命的登革出血熱(DHF)或登革休克綜合徵(DSS),主要是通過引起血小板減少和血管通透性增加而導致血漿滲漏和出血。我們之前的研究表明,糖尿病(DM)患者由於異常免疫信號傳遞而造成免疫缺陷,並且其對自然免疫細胞在對某些感染的反應非常微弱。根據之前臨床的數據顯示,與無DM的患者相比,DM患者感染登革熱後病毒的數量更高,發展成登革熱重症的機會更高。因此,我們建立登革熱病毒感染糖尿病小鼠動物模型研究初次感染的免疫反應。在動物模型部分,我們將每隻小鼠的2×106PFU登革熱病毒作為對照組,經由靜脈注射感染STAT1-/-- 小鼠。我們使用血管通透性分析和組織病理分析登革病毒感染小鼠的肺,肝和小腸組織中的發炎和出血的情況。我們通過血管通透性測定發現了登革熱病毒感染的STAT1-/- 小鼠的肝臟和小腸中血管通透性增強。我們還觀察到組織病理分析登革病毒感染STAT1-/- 小鼠的小腸出血和免疫細胞浸潤。接著我們將每隻小鼠經由靜脈主射感染2x106PFU的登革熱病毒至鏈脲佐菌素(STZ)誘導的糖尿病小鼠。我們發現在每隻小鼠感染2×106PFU登革熱病毒的糖尿病小鼠的小腸中增強的血管通透性。我們觀察了登革病毒感染的糖尿病小鼠模型中自然類淋巴細胞(ILCs)的變化。我們發現在糖尿病小鼠感染的登革熱病毒的小腸中ILC1和ILC3增加。這些結果顯示糖尿病人的免疫缺陷,和先前報告可導致發展成登革重症的免疫缺損有相似類似的地方。

    Dengue virus is a blood-borne pathogen that causes dengue fever in patients. In the primary dengue virus infection, the virus usually causes mild dengue fever. In the secondary infection, however, the virus can induce life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which lead to plasma leakage and hemorrhage by causing thrombocytopenia and increased vascular permeability. Our previous studies showed that patients with diabetes mellitus (DM) are immunodeficient due to aberrant immune signal transduction and their innate immune cells were severely weakened in the responses to certain infections. The data from the previous epidemic also showed that dengue patients with DM had higher viral loads and a higher chance of severe disease in comparison with patients without DM. Therefore, we investigated the immune responses to primary dengue viral infection in a diabetic mouse model. We found enhanced vascular permeability in the liver and small intestine of the STAT1-/- mouse with dengue virus infection. We also observed hemorrhage and leukocyte infiltration in the small intestine of STAT1-/- mice with dengue virus infection. We then intravenously infected the streptozotocin (STZ)-induced diabetic mouse. We found enhanced vascular permeability in the small intestine of the diabetic mouse infected with dengue virus. We also investigated the changes in innate lymphoid cells (ILCs) in the primary dengue virus-infected diabetic mice model. We found increased ILC1 and ILC3 in the small intestine of the diabetic mouse infected with dengue virus. The abnormal immune responses in subjects with DM hence may be similar to the immunodeficient conditions reported to predispose to more severe dengue virus infection.

    Contents 2 Abstract 5 中文摘要 6 Abbreviations 7 Chapter 1 Introduction 9 1.1 Immunological basis of Diabetes Mellitus 10 1.2 Immunological basis of dengue fever 10 1.3 Immunodeficiency leading to susceptibility to dengue virus infection 11 1.4 Diabetes Is a Risk Factor for Severe Clinical Presentations of Dengue Fever 11 1.5 Innate lymphoid cells (ILCs) 12 1.6 Innate lymphoid cells in diabetes mellitus 13 1.7 Research Goals 14 Chapter 2 Materials and Methods 15 2.1.1 Cultures Aedes albopictus mosquito cell line C6/36 and Baby hamster kidney(BHK-21) cell. 16 2.1.2 Virus stock and Virus titration 16 2.2 Experimental animals 16 2.3.1 Streptozotocin-induced diabetes 17 2.3.2 Dengue virus-infected mice 17 2.4 Vascular permeability analysis 18 2.5 Hematoxylin and eosin staining (H&E stain) 18 2.6 Clinical chemistry analysis 18 2.7 ILCs detection by flow cytometric analysis 19 2.8 Statistical analysis 19 Chapter 3 Results 20 3.1 Dengue virus infection induced severe disease in STAT1-/- mice 21 3.1.1 Dengue virus induced hemorrhagic inflammation in the small intestine of STAT1-/- mice. 21 3.2 Dengue virus infection in STZ-induced diabetic mice. 22 3.3 Dengue virus infection enhanced vascular leakage in the small intestine. 23 3.4 Dengue virus infection increased IL-1β in the small intestine. 23 3.4.1 Dengue virus infection increased ILC1 and ILC3 in the small intestine. 24 Chapter 4 Discussion 26 4.1 Immune Dysfunction of Diabetes Mellitus 27 4.2 Essential Role for Signal Transducer and Activator of Transcription-1 in Streptozotocin-Induced Diabetes 28 4.3 Systemic Infection with Dengue Virus Leads to Vascular Leakage 29 4.4 ILCs may play a role of dengue virus infection 29 4.5 The Pathology of Severe Dengue in Multiple Organs 30 4.6 ILCs can transdifferentiate in response to dengue virus-induced inflammation. 30 Chapter 5 Figure and Legends 32 Plaque assays in 12 well plates agar overlays containing dengue virus 454009A. 33 Dengue virus infection induced severe disease in STAT1-/- mice. 35 Dengue virus induced hemorrhagic inflammation in the small intestine of STAT1-/- mice. 37 STZ-induced diabetic mice. 39 Dengue virus infection induced disease in diabetic mice. 41 Dengue virus induced inflammation in the small intestine of WT mice and STZ-induced diabetic mice. 43 Dengue virus infection enhanced vascular leakage in the small intestine. 45 Dengue virus infection increased IL-1β in the small intestine. 46 ILC1 and ILC3 gating strategy in WT mice 47 Dengue virus infection increased innate lymphoid cell 1 and innate lymphoid cell 1 in the small intestine of diabetic mice. 49 How Diabetes affects the immune responses against dengue virus infection 50 Chapter 6 References 51

    1. Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840-6.
    2. Xie, Z., C. Chang, and Z. Zhou, Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol, 2014. 47(2): p. 174-92.
    3. Boni-Schnetzler, M., et al., Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab, 2008. 93(10): p. 4065-74.
    4. Yen, C.L., et al., Phosphorylation of glycogen synthase kinase-3beta in metabolically abnormal obesity affects immune stimulation-induced cytokine production. Int J Obes (Lond), 2015. 39(2): p. 270-8.
    5. Javid, A., et al., Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen. PLoS One, 2016. 11(6): p. e0158019.
    6. Chau, T.N., et al., Dengue in Vietnamese infants--results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis, 2008. 198(4): p. 516-24.
    7. Rigau-Perez, J.G., et al., Dengue and dengue haemorrhagic fever. Lancet, 1998. 352(9132): p. 971-7.
    8. Gubler, D.J., Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 1998. 11(3): p. 480-96.
    9. Kliks, S.C., et al., Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg, 1989. 40(4): p. 444-51.
    10. Alayli, F. and F. Scholle, Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology, 2016. 496: p. 227-236.
    11. St John, A.L., et al., Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. Elife, 2013. 2: p. e00481.
    12. Shresta, S., et al., Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol, 2004. 78(6): p. 2701-10.
    13. Pang, J., et al., Diabetes, cardiac disorders and asthma as risk factors for severe organ involvement among adult dengue patients: A matched case-control study. Sci Rep, 2017. 7: p. 39872.
    14. Cersosimo, E. and R.A. DeFronzo, Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev, 2006. 22(6): p. 423-36.
    15. Dandona, P., et al., Endothelial dysfunction, inflammation and diabetes. Rev Endocr Metab Disord, 2004. 5(3): p. 189-97.
    16. Ooi, E.T., et al., Gastrointestinal manifestations of dengue infection in adults. Med J Malaysia, 2008. 63(5): p. 401-5.
    17. Watanabe, S., et al., Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol, 2015. 89(11): p. 5847-61.
    18. Morita, H., K. Moro, and S. Koyasu, Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol, 2016. 138(5): p. 1253-1264.
    19. Sonnenberg, G.F., Regulation of intestinal health and disease by innate lymphoid cells. Int Immunol, 2014. 26(9): p. 501-7.
    20. Sonnenberg, G.F., et al., Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science, 2012. 336(6086): p. 1321-5.
    21. Sonnenberg, G.F., L.A. Fouser, and D. Artis, Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol, 2011. 12(5): p. 383-90.
    22. Buonocore, S., et al., Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature, 2010. 464(7293): p. 1371-5.
    23. Spits, H. and J.P. Di Santo, The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol, 2011. 12(1): p. 21-7.
    24. Klose, C.S.N., et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell, 2014. 157(2): p. 340-356.
    25. Spits, H. and T. Cupedo, Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol, 2012. 30: p. 647-75.
    26. Spits, H., et al., Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol, 2013. 13(2): p. 145-9.
    27. Vonarbourg, C., et al., Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity, 2010. 33(5): p. 736-51.
    28. Wu, D., et al., Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science, 2011. 332(6026): p. 243-7.
    29. Molofsky, A.B., et al., Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med, 2013. 210(3): p. 535-49.
    30. Wensveen, F.M., et al., The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol, 2015. 45(9): p. 2446-56.
    31. Donath, M.Y. and S.E. Shoelson, Type 2 diabetes as an inflammatory disease. Nat Rev Immunol, 2011. 11(2): p. 98-107.
    32. Lackey, D.E. and J.M. Olefsky, Regulation of metabolism by the innate immune system. Nat Rev Endocrinol, 2016. 12(1): p. 15-28.
    33. Duerr, C.U., et al., Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat Immunol, 2016. 17(1): p. 65-75.
    34. Cildir, G., S.C. Akincilar, and V. Tergaonkar, Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med, 2013. 19(8): p. 487-500.
    35. Chen, J.P., et al., Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol, 2006. 177(5): p. 3185-92.
    36. Tesch, G.H. and T.J. Allen, Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton), 2007. 12(3): p. 261-6.
    37. Tan, G.K., et al., A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis, 2010. 4(4): p. e672.
    38. Zhang, H., et al., Predictive symptoms and signs of severe dengue disease for patients with dengue fever: a meta-analysis. Biomed Res Int, 2014. 2014: p. 359308.
    39. Zellweger, R.M., T.R. Prestwood, and S. Shresta, Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe, 2010. 7(2): p. 128-39.
    40. Casqueiro, J., J. Casqueiro, and C. Alves, Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab, 2012. 16 Suppl 1: p. S27-36.
    41. Flyvbjerg, A., Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol, 2010. 6(2): p. 94-101.
    42. Peleg, A.Y., et al., Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev, 2007. 23(1): p. 3-13.
    43. Price, C.L., et al., Methylglyoxal modulates immune responses: relevance to diabetes. J Cell Mol Med, 2010. 14(6B): p. 1806-15.
    44. Htun, H.L., et al., Metformin Use and Severe Dengue in Diabetic Adults. Sci Rep, 2018. 8(1): p. 3344.
    45. Lai, Y.C., et al., Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep, 2017. 7(1): p. 6975.
    46. Callewaert, H.I., et al., Deletion of STAT-1 pancreatic islets protects against streptozotocin-induced diabetes and early graft failure but not against late rejection. Diabetes, 2007. 56(8): p. 2169-73.
    47. Kim, S., et al., Essential role for signal transducer and activator of transcription-1 in pancreatic beta-cell death and autoimmune type 1 diabetes of nonobese diabetic mice. Diabetes, 2007. 56(10): p. 2561-8.
    48. Ranjit, S. and N. Kissoon, Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Med, 2011. 12(1): p. 90-100.
    49. Phanthanawiboon, S., et al., Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-alpha and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors. PLoS One, 2016. 11(2): p. e0148564.
    50. Stier, M.T., et al., STAT1 Represses Cytokine-Producing Group 2 and Group 3 Innate Lymphoid Cells during Viral Infection. J Immunol, 2017. 199(2): p. 510-519.
    51. Povoa, T.F., et al., The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One, 2014. 9(4): p. e83386.
    52. Ohne, Y., et al., IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol, 2016. 17(6): p. 646-55.
    53. Bernink, J.H., et al., Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity, 2015. 43(1): p. 146-60.

    下載圖示 校內:2020-08-06公開
    校外:2020-08-06公開
    QR CODE