簡易檢索 / 詳目顯示

研究生: 黃鴻鈞
Huang, Hong-Jyun
論文名稱: 探討登革病毒一致性外膜蛋白第三結構域與去除C端非結構性蛋白1之結合蛋白提供之保護效果
Studies on the protective effects of combined dengue virus consensus E protein domain III (cEDIII) and C-terminal modified NS1
指導教授: 林以行
Lin, Yee-Shin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 登革病毒非結構性蛋白1一致性外膜蛋白第三結構域
外文關鍵詞: dengue virus, nonstructural protein 1, consensus envelope protein domain III
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒(DENV)是一種正股的單鏈RNA病毒,每年導致約3.9億個感染病例。迫切需要開發有效且安全的抗登革疫苗。先前研究中,由於非結構性蛋白1(NS1)的C端(271-352氨基酸)與血小板和內皮細胞呈現相似的表面抗原,可能會有交叉反應的疑慮而被修飾為ΔC NS1和DJ NS1。ΔC NS1和DJ NS1所誘導的抗體可以降低小鼠因登革病毒感染導致出血時間的延長。此外,一致性外膜蛋白第三結構域(cEDIII)在四型登革病毒中具有相似的氨基酸序列,所誘導的抗體對於四型登革病毒皆具有中和活性。因此,在先前的研究中將其合成為重組蛋白cEDIII-ΔC NS1並以此免疫小鼠,發現其血清不僅對四型登革病毒皆具有中和活性,並且能透過補體介導的毒殺功能殺死被四型登革病毒感染的HMEC-1細胞。我們進一步比較了cEDIII-ΔC NS1與cEDIII加上DJ NS1作為疫苗的可能性。考慮到cEDIII和DJ NS1之間的分子大小差異,我們測試了這兩種蛋白質的不同比例,發現給予每隻小鼠 5 μg 的cEDIII與 20 μg DJ NS1在誘導抗cEDIII和抗DJ NS1上有較佳的血清效價。在評估小鼠的抗體效價時,我們發現以cEDIII-ΔC NS1或cEDIII加上DJ NS1去免疫6-8週齡的小鼠,所誘導的抗cEDIII和抗DJ NS1抗體有相似的血清效價。在細胞試驗中,我們發現不論是cEDIII-ΔC NS1或是cEDIII加上DJ NS1誘導的抗體不僅對登革病毒有中和能力,且能與補體共同作用殺死被登革病毒感染的細胞。為了測試cEDIII-ΔC NS1在較小週齡小鼠的免疫效果,我們進一步評估了cEDIII-ΔC NS1對3週齡小鼠在登革病毒感染的保護作用。3週齡小鼠和6至8週齡小鼠經三劑免疫後誘導的抗cEDIII和抗NS1的血清效價沒有顯著差異。相較於僅以登革病毒或加上明礬感染的組別,cEDIII-ΔC NS1免疫的3週齡小鼠在登革病毒感染後顯示出較低的出血時間、血中病毒量以及NS1量。整體來說,研究結果顯示,cEDIII-ΔC NS1誘導的抗體不僅在細胞試驗中顯示出抗病毒功效,並在登革病毒感染小鼠模型中提供保護作用,是具有潛力的登革候選疫苗。

    Dengue virus (DENV), which causes about 390 million infection cases per year, is a positive-sense, single-stranded RNA virus. The development of an effective and safe vaccine for DENV infection is in urgent need. In our previous studies, C-terminal region (271-352 amino acids) of nonstructural protein 1 (NS1) was modified into ΔC NS1 and DJ NS1, due to the existence of cross-reactive epitopes which mimic the surface antigens of platelets and endothelial cells. Antibodies against ΔC NS1 and DJ NS1 can reduce DENV-induced prolonged bleeding time in mice. Also, antibody against consensus envelope protein domain III (cEDIII), of which the amino acid sequences are consensus among four serotypes of DENV, showed neutralizing activity against all the four serotypes of DENV. In our previous studies, a recombinant protein cEDIII-ΔC NS1 was generated and the sera collected from cEDIII-ΔC NS1-immunized mice neutralized four serotypes of DENV and also caused complement-mediated cytolysis on HMEC-1 cells infected by four different serotypes of DENV. We further compared cEDIII-ΔC NS1 with cEDIII plus DJ NS1 for potential vaccine candidate. Considering the size difference between cEDIII and DJ NS1, we tested different ratios of these two proteins and found better serum titers of anti-cEDIII and anti-DJ NS1 using a combination of cEDIII (5 μg/mouse) with DJ NS1 (20 μg/mouse) for immunization. When exploring the antibody titers of cEDIII-ΔC NS1-immunized mice, we actually found similar serum titers of anti-cEDIII and anti-DJ NS1 as those immunized with cEDIII plus DJ NS1 in 6-8-week-old mice. In cellular test, we found that antibodies induced by cEDIII-ΔC NS1 or cEDIII combined with DJ NS1 showed not only neutralizing ability to DENV but also cytolytic ability to DENV-infected cells in the presence of complement. For the purpose of vaccine administration at early age, we further evaluated the protective effects of cEDIII-ΔC NS1 against DENV infection in 3-week-old mice. The serum titers against cEDIII and NS1 showed no significant difference after 3-time immunization between 3-week-old mice and 6-8-week-old mice. The cEDIII-ΔC NS1-immunized mice displayed lower bleeding time, viral titer, and plasma NS1 level in 3-week-old mice after DENV infection as compared with mice infected with DENV alone or DENV plus alum. Overall, the results in the study reveal that antibodies induced by cEDIII-ΔC NS1 not only show anti-viral efficacy in the cellular test but also provide protective effects in DENV infection mouse model, which provides a potential strategy for dengue vaccine candidates.

    中文摘要 I Abstract II Acknowledgement IV Table of Contents V Figure List VIII Abbreviations X Introduction 1 I. Epidemiology of dengue virus 1 II. Characteristics of DENV 2 III. Clinical symptoms of dengue virus infection 4 IV. The pathogenesis of DENV infection 5 i. Virus variation 5 ii. Antibody-dependent enhancement (ADE) 5 iii. Cellular immune response 5 iv. Complement activation 6 v. Autoimmunity 6 vi. Soluble factors and vascular leakage 7 vii. Mast cell activation 7 V. Animal model of DENV infection 8 VI. Dengue vaccine development 9 Objective and Specific aims 13 Materials and Methods 15 1. Materials 15 1-1 Mice 15 1-2 Cell lines 15 1-3 Virus 15 1-4 Preparation of recombinant proteins 15 1-5 Preparation of mixing immunogen with the Imject Alum 16 1-6 Chemicals and reagents 16 1-7 Antibodies and kits 19 1-8 Consumables 19 1-9 Instruments 20 2. Methods 21 2-1 Cell cultures 21 2-2 Virus culture 21 2-3 Plague assay 22 2-4 Serum antibody titer determination 22 2-5 Plaque reduction neutralizing test 23 2-6 Antibody-dependent complement-mediated cytolytic assay 23 2-7 Mouse infection model 24 2-8 Bleeding time 24 2-9 NS1 titer quantitative ELISA 24 2-10 Viral titers analysis 25 2-11 Statistical analysis 25 Results 26 1. Active immunization with both alum-mixed cEDIII-ΔC NS1 or a certain ratio of cEDIII + DJ NS1 protein induces optimal antibody responses in mice. 26 1.1 Preparation of recombinant proteins. 26 1.2 Immunization with 6.25 μg cEDIII + 18.75 μg DJ NS1 is still insufficient to induce optimal antibody titers specific for cEDIII and DJ NS1 proteins. 26 1.3 Immunization with 5 μg cEDIII + 20 μg DJ NS1 or 25 μg cEDIII-ΔC NS1 induces optimal antibody titers specific for cEDIII and DJ NS1 proteins. 27 2. cEDIII-ΔC NS1- and cEDIII + DJ NS1-immunized mouse sera induce the neutralization capacity and antibody-complement-mediated cytolysis effect in vitro. 27 2.1 Sera of cEDIII-ΔC NS1 and cEDIII + DJ NS1-immunized mice neutralize DENV2. 27 2.2 Sera of cEDIII-ΔC NS1, DJ NS1, and cEDIII + DJ NS1-immunized mice kill DENV2-infected cells by complement-dependent cytolysis. 28 3. cEDIII-ΔC NS1 protein confers protective effects against DENV2 infection in vivo. 28 3.1 cEDIII-ΔC NS1 induces similar antibody responses between 3-week-old and 6-8-week old mice. 28 3.2 cEDIII-ΔC NS1 induces optimal antibody responses after 3rd dose immunization. 29 3.3 Active immunization with cEDIII-ΔC NS1 reduces prolonged bleeding time induced by DENV. 30 3.4 Active immunization with cEDIII-ΔC NS1 reduces NS1 concentrations and viral titers in mouse plasma. 30 Discussion 31 Conclusion 36 References 37 Figures 45 Appendix I 62 Appendix II 63

    Abraham, S. N., & St. John, A. L. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol, 10, 440. (2010).
    Aguirre, S., Maestre, A. M., Pagni, S., Patel, J. R., Savage, T., Gutman, D., et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog, 8, e1002934-e1002934. (2012).
    Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., et al. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 343, 881-885. (2014).
    Alen, M. M., & Schols, D. Dengue virus entry as target for antiviral therapy. J Trop Med, 2012, 628475. (2012).
    Arora, U., Tyagi, P., Swaminathan, S., & Khanna, N. Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine, 31, 873-878. (2013).
    Avirutnan, P., Fuchs, A., Hauhart, R. E., Somnuke, P., Youn, S., Diamond, M. S., et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med, 207, 793-806. (2010).
    Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., & Atkinson, J. P. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol, 187, 424-433. (2011).
    Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., et al. Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement. J Infect Dis, 193, 1078-1088. (2006).
    Beatty, P. R., Orozco, S., Killingbeck, S., Zompi, S., & Harris, E. Dengue virus nonstructural protein 1 vaccine protects against lethal challenge in interferon α/β receptor-deficient mice (P6348). J. Immunol, 190, 182.126. (2013).
    Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., Glasner, D. R., Hopkins, K., & Harris, E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med., 7, 304ra141. (2015).
    Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. The global distribution and burden of dengue. Nature, 496, 504. (2013).
    Block, O. K. T., Rodrigo, W. W. S. I., Quinn, M., Jin, X., Rose, R. C., & Schlesinger, J. J. A tetravalent recombinant dengue domain III protein vaccine stimulates neutralizing and enhancing antibodies in mice. Vaccine, 28, 8085-8094. (2010).
    Capeding, R. Z., Luna, I. A., Bomasang, E., Lupisan, S., Lang, J., Forrat, R., et al. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: Randomized controlled phase I trial in the Philippines. Vaccine, 29, 3863-3872. (2011).
    Chen, H.-C., Hofman, F. M., Kung, J. T., Lin, Y.-D., & Wu-Hsieh, B. A. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol, 81, 5518-5526. (2007).
    Chen, H.-C., Lai, S.-Y., Sung, J.-M., Lee, S.-H., Lin, Y.-C., Wang, W.-K., et al. Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. J. Med. Virol., 73, 419-431. (2004).
    Chen, H.-R., Chao, C.-H., Liu, C.-C., Ho, T.-S., Tsai, H.-P., Perng, G.-C., et al. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog, 14, e1007033-e1007033. (2018).
    Chen, H.-R., Chuang, Y.-C., Lin, Y.-S., Liu, H.-S., Liu, C.-C., Perng, G.-C., et al. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl. Trop. Dis., 10, e0004828-e0004828. (2016).
    Chen, H.-R., Lai, Y.-C., & Yeh, T.-M. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci, 25, 58-58. (2018).
    Chen, H.-W., Liu, S.-J., Li, Y.-S., Liu, H.-H., Tsai, J.-P., Chiang, C.-Y., et al. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch. Virol., 158, 1523-1531. (2013).
    Chen, M.-C., Lin, C.-F., Lei, H.-Y., Lin, S.-C., Liu, H.-S., Yeh, T.-M., et al. Deletion of the C-Terminal Region of Dengue Virus Nonstructural Protein 1 (NS1) Abolishes Anti-NS1-Mediated Platelet Dysfunction and Bleeding Tendency. J. Immunol, 183, 1797. (2009).
    Cheng, H.-J., Lin, C.-F., Lei, H.-Y., Liu, H.-S., Yeh, T.-M., Luo, Y.-H., et al. Proteomic Analysis of Endothelial Cell Autoantigens Recognized by Anti-Dengue Virus Nonstructural Protein 1 Antibodies. Exp. Biol. Med., 234, 63-73. (2009).
    Chiang, C.-Y., Huang, M.-H., Hsieh, C.-H., Chen, M.-Y., Liu, H.-H., Tsai, J.-P., et al. Dengue-1 Envelope Protein Domain III along with PELC and CpG Oligodeoxynucleotides Synergistically Enhances Immune Responses. PLoS Negl. Trop. Dis., 6, e1645. (2012).
    Chu, Y.-T., Wan, S.-W., Chang, Y.-C., Lee, C.-K., Wu-Hsieh, B. A., Anderson, R., et al. Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. [Research Article]. Lab. Invest., 97, 602. (2017).
    Clements, D. E., Coller, B.-A. G., Lieberman, M. M., Ogata, S., Wang, G., Harada, K. E., et al. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine, 28, 2705-2715. (2010).
    de Alwis, R., Smith, S. A., Olivarez, N. P., Messer, W. B., Huynh, J. P., Wahala, W. M. P. B., et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc Natl Acad Sci U S A, 109, 7439-7444. (2012).
    Diamond, M. S., & Pierson, T. C. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell, 162, 488-492. (2015).
    Durbin, A. P., Kirkpatrick, B. D., Pierce, K. K., Carmolli, M. P., Tibery, C. M., Grier, P. L., et al. A 12-Month-Interval Dosing Study in Adults Indicates That a Single Dose of the National Institute of Allergy and Infectious Diseases Tetravalent Dengue Vaccine Induces a Robust Neutralizing Antibody Response. J Infect Dis, 214, 832-835. (2016).
    Edeling, M. A., Diamond, M. S., & Fremont, D. H. Structural basis of Flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A, 111, 4285-4290. (2014).
    Frei, J. C., Wirchnianski, A. S., Govero, J., Vergnolle, O., Dowd, K. A., Pierson, T. C., et al. Engineered Dengue Virus Domain III Proteins Elicit Cross-Neutralizing Antibody Responses in Mice. J Virol, 92, e01023-01018. (2018).
    Furuta, T., Murao, L. A., Lan, N. T. P., Huy, N. T., Huong, V. T. Q., Thuy, T. T., et al. Association of Mast Cell-Derived VEGF and Proteases in Dengue Shock Syndrome. PLoS Negl. Trop. Dis., 6, e1505. (2012).
    Gessner, B. D., & Halsey, N. Dengue vaccine safety signal: Immune enhancement, waning immunity, or chance occurrence? Vaccine, 35, 3452-3456. (2017).
    Glasner, D. R., Ratnasiri, K., Puerta-Guardo, H., Espinosa, D. A., Beatty, P. R., & Harris, E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog, 13, e1006673. (2017).
    Gonçalves, A. J. S., Oliveira, E. R. A., Costa, S. M., Paes, M. V., Silva, J. F. A., Azevedo, A. S., et al. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen. PLoS Negl. Trop. Dis., 9, e0004277-e0004277. (2015).
    Guzman, M. G., Alvarez, M., & Halstead, S. B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol., 158, 1445-1459. (2013).
    Hadinegoro, S. R., Arredondo-García, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T., Dietze, R., et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med., 373, 1195-1206. (2015).
    Halstead, S. B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine, 35, 6355-6358. (2017).
    Harrison, S. C. Viral membrane fusion. Nat Struct Mol Biol, 15, 690-698. (2008).
    Hsieh WC, C. M., Lin KT, Hsu ST, Ma CI, Wu SS. Outbreak of Dengue fever in 1981 in Liouchyou Shiang, Pingtung County. Taiwan Yi Xue Hui Za Zhi, 81, 1388-1395. (1982).
    Kalayanarooj, S. Clinical Manifestations and Management of Dengue/DHF/DSS. Trop Med Health, 39, 83-87. (2011).
    Katzelnick, L. C., Harris, E., & Participants in the Summit on Dengue Immune Correlates of, P. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine, 35, 4659-4669. (2017).
    Kim, Y. M., Gayen, S., Kang, C., Joy, J., Huang, Q., Chen, A. S., et al. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J Biol Chem, 288, 12891-12900. (2013).
    Klein, D. E., Choi, J. L., & Harrison, S. C. Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol, 87, 2287-2293. (2013).
    Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108, 717-725. (2002).
    Kunder, C. A., St John, A. L., & Abraham, S. N. Mast cell modulation of the vascular and lymphatic endothelium. Blood, 118, 5383-5393. (2011).
    Leng, C.-H., Liu, S.-J., Tsai, J.-P., Li, Y.-S., Chen, M.-Y., Liu, H.-H., et al. A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes and Infection, 11, 288-295. (2009).
    Leung, D., Schroder, K., White, H., Fang, N. X., Stoermer, M. J., Abbenante, G., et al. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem, 276, 45762-45771. (2001).
    Li, L., Lok, S.-M., Yu, I. M., Zhang, Y., Kuhn, R. J., Chen, J., et al. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation. Science, 319, 1830. (2008).
    Libraty, D. H., Young, P. R., Pickering, D., Endy, T. P., Kalayanarooj, S., Green, S., et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis, 186, 1165-1168. (2002).
    Lin, C.-F., Lei, H.-Y., Shiau, A.-L., Liu, C.-C., Liu, H.-S., Yeh, T.-M., et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J. Med. Virol., 69, 82-90. (2003).
    Lin, S.-W., Chuang, Y.-C., Lin, Y.-S., Lei, H.-Y., Liu, H.-S., & Yeh, T.-M. Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J. Infect., 64, 325-334. (2012).
    Low, J. G. H., Ooi, E. E., & Vasudevan, S. G. Current Status of Dengue Therapeutics Research and Development. J Infect Dis, 215, S96-S102. (2017).
    Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., & Lescar, J. Crystal structure of the NS3 protease-helicase from dengue virus. J Virol, 82, 173-183. (2008).
    Mackenzie, J. M., Jones, M. K., & Young, P. R. Immunolocalization of the Dengue Virus Nonstructural Glycoprotein NS1 Suggests a Role in Viral RNA Replication. Virology, 220, 232-240. (1996).
    Malavige, G. N., Fernando, S., Fernando, D. J., & Seneviratne, S. L. Dengue viral infections. Postgrad. Med. J., 80, 588. (2004).
    Malavige, G. N., & Ogg, G. S. Pathogenesis of vascular leak in dengue virus infection. Immunology, 151, 261-269. (2017).
    Martina, B. E. E., Koraka, P., & Osterhaus, A. D. M. E. Dengue virus pathogenesis: an integrated view. Clin. Microbiol. Rev., 22, 564-581. (2009).
    Mathew, A., Townsley, E., & Ennis, F. A. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol, 9, 411-425. (2014).
    Modhiran, N., Watterson, D., Blumenthal, A., Baxter, A. G., Young, P. R., & Stacey, K. J. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell Biol., 95, 491-495. (2017).
    Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med., 7, 304ra142. (2015).
    Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100, 6986-6991. (2003).
    Monath, T. P., Seligman, S. J., Robertson, J. S., Guy, B., Hayes, E. B., Condit, R. C., et al. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment. Vaccine, 33, 62-72. (2015).
    Morrison, J., Laurent-Rolle, M., Maestre, A. M., Rajsbaum, R., Pisanelli, G., Simon, V., et al. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog, 9, e1003265-e1003265. (2013).
    Mukhopadhyay, S., Kuhn, R. J., & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3, 13-22. (2005).
    Nascimento, E. J. M., Silva, A. M., Cordeiro, M. T., Brito, C. A., Gil, L. H. V. G., Braga-Neto, U., et al. Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity. PLoS One, 4, e6782. (2009).
    Nemésio, H., Palomares-Jerez, F., & Villalaín, J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1818, 2818-2830. (2012).
    Normile, D. Safety concerns derail dengue vaccination program. Science, 358, 1514. (2017).
    Oliveira, E. R. A., Gonçalves, A. J. S., Costa, S. M., Azevedo, A. S., Mantuano-Barradas, M., Nogueira, A. C. M. A., et al. Aspects of T Cell-Mediated Immunity Induced in Mice by a DNA Vaccine Based on the Dengue-NS1 Antigen after Challenge by the Intracerebral Route. PLoS One, 11, e0163240-e0163240. (2016).
    Osorio, J. E., Brewoo, J. N., Silengo, S. J., Arguello, J., Moldovan, I. R., Tary-Lehmann, M., et al. Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in Cynomolgus macaques. Am J Trop Med Hyg, 84, 978-987. (2011).
    Palmer, D. R., Sun, P., Celluzzi, C., Bisbing, J., Pang, S., Sun, W., et al. Differential effects of dengue virus on infected and bystander dendritic cells. J Virol, 79, 2432-2439. (2005).
    Pang, E. L., & Loh, H.-S. Towards development of a universal dengue vaccine – How close are we? Asian Pac. J. Trop. Med., 10, 220-228. (2017).
    Pang, T., Cardosa, M. J., & Guzman, M. G. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell Biol., 85, 43-45. (2007).
    Pong, W. L., Huang, Z. S., Teoh, P. G., Wang, C. C., & Wu, H. N. RNA binding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett, 585, 2575-2581. (2011).
    Prestwood, T. R., Morar, M. M., Zellweger, R. M., Miller, R., May, M. M., Yauch, L. E., et al. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice. J Virol, 86, 12561-12570. (2012).
    Puerta-Guardo, H., Glasner, D. R., & Harris, E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog, 12, e1005738. (2016).
    Quach, Q. H., Ang, S. K., Chu, J.-H. J., & Kah, J. C. Y. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomaterialia, 78, 224-235. (2018).
    Rathore, A. P. S., Syenina, A., Gubler, D., & St. John, A. L. Dengue virus-elicited tryptase breaks tight junctions to induce endothelial permeability. J. Immunol, 196, 217.219. (2016).
    Rivino, L. T cell immunity to dengue virus and implications for vaccine design. Expert Review of Vaccines, 15, 443-453. (2016).
    Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol, 11, 532. (2011).
    Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 15, 745. (2015).
    Silva, E. M., Conde, J. N., Allonso, D., Ventura, G. T., Coelho, D. R., Carneiro, P. H., et al. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Scientific Reports, 9, 2651. (2019).
    Simmons, C. P., Farrar, J. J., van Vinh Chau, N., & Wills, B. Dengue. N Engl J Med., 366, 1423-1432. (2012).
    Simmons, M., Murphy, G. S., & Hayes, C. G. Short report: Antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg, 65, 159-161. (2001).
    St. John, A. L. Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology. PLoS Pathog, 9, e1003783. (2013).
    Sukupolvi-Petty, S., Austin, S. K., Engle, M., Brien, J. D., Dowd, K. A., Williams, K. L., et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol, 84, 9227-9239. (2010).
    Syenina, A., Jagaraj, C. J., Aman, S. A. B., Sridharan, A., & St John, A. L. Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors. eLife, 4, e05291. (2015).
    Tsai, J.-J., Liu, C.-K., Tsai, W.-Y., Liu, L.-T., Tyson, J., Tsai, C.-Y., et al. Seroprevalence of dengue virus in two districts of Kaohsiung City after the largest dengue outbreak in Taiwan since World War II. PLoS Negl. Trop. Dis., 12, e0006879. (2018).
    Villar, L., Dayan, G. H., Arredondo-García, J. L., Rivera, D. M., Cunha, R., Deseda, C., et al. Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America. N Engl J Med., 372, 113-123. (2014).
    Wahala, W. M. P. B., Kraus, A. A., Haymore, L. B., Accavitti-Loper, M. A., & de Silva, A. M. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology, 392, 103-113. (2009).
    Wan S.-W.,., Lin, C.-F., Mei-Chun, C., Huan-Yao, L., Liu, H.-S., Yeh, T.-M., et al. C-Terminal Region of Dengue Virus Nonstructural Protein 1 Is Involved in Endothelial Cell Cross-Reactivity via Molecular Mimicry. J Biomed Sci, 4, 85-91. (2008).
    Wan, S.-W., Lu, Y.-T., Huang, C.-H., Lin, C.-F., Anderson, R., Liu, H.-S., et al. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PloS one, 9, e92495-e92495. (2014).
    Wan, S. W., Lin, C. F., Yeh, T. M., Liu, C. C., Liu, H. S., Wang, S., et al. Autoimmunity in dengue pathogenesis. J Formos Med Assoc, 112, 3-11. (2013).
    WHO. Dengue and severe dengue. (2014).
    WHO. Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine. (2018).
    Williams, K. L., Wahala, W. M. P. B., Orozco, S., de Silva, A. M., & Harris, E. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology, 429, 12-20. (2012).
    Xie, X., Gayen, S., Kang, C., Yuan, Z., & Shi, P.-Y. Membrane topology and function of dengue virus NS2A protein. J Virol, 87, 4609-4622. (2013).
    Yap, S. S. L., Nguyen-Khuong, T., Rudd, P. M., & Alonso, S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol, 8, 1415-1415. (2017).
    Yang, M., Studies on the protective effects of combined dengue virus consensus envelope protein domain III and C nonstructural protein 1 in the mouse model. (2017).
    Youn, S., Ambrose, R. L., Mackenzie, J. M., & Diamond, M. S. Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis. Virol J, 10, 339-339. (2013).

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE