| 研究生: |
莊文棟 Chuang, Wen-dong |
|---|---|
| 論文名稱: |
含高折射率化合物全像光柵之製備及特性研究 Fabrication and Characterization of Holographic Gratings with High Refractive Index Compounds |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 繞射效率 、光柵 、相分離 |
| 外文關鍵詞: | diffraction efficiency, phase separation, optical grating |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光柵可被應用於影像紀錄、訊息傳遞、資訊儲存、光學邏輯運算元件等領域。本研究嘗試以成本較低的單體甲基丙烯酸甲酯Methyl methacrylate、交聯劑與高折射率二苯硫醚Diphenyl sulfide組成取代液晶材料於全像紀錄光柵上之應用。對於起始劑量、組成比例、入射角、雷射功率、介質厚度、分子極性、黏度等進行實驗參數的探討,並以光聚合反應及相分離行為等觀點探討光柵成因。繞射效率為光柵重要參數之一,以繞射效率為界定此全像光學光柵效能。本介質組成之繞射效率極值可達到約30 %,接近Raman-Nath regime之穿透光柵理論極值 33.9 %。熱處理程序:環境溫度或曝後烤步驟,對於光柵形成的確有相當程度的影響。適當的溫度條件控制下,可有效減短光柵形成時間並提高繞射效率值。另外,由雷射光源ON-OFF變換可於本全像介質進行多次紀錄。繞射效率曲線之變化結果顯示,可進行5次以上之可辨識訊號紀錄。利用掃瞄式電子顯微鏡SEM、或掃瞄探針式顯微鏡SPM進行光柵結構之表面觀測,可發現隨紀錄角度與光強弱區域性分布的不同,其高分子有溝槽狀或格子狀結構產生。經SEM分析,得其光柵之最小間隙可達至 1000 lines/mm 的線寬密度。繞射圖紋亦隨光柵結構的不同於二維空間上有不等位向的點陣變化。研究結果顯示本實驗使用之紀錄介質組成的確可取代液晶成為全像光柵材料,在影像紀錄及資訊儲存上有其價值與進一步開發的潛能。
Optical grating could be applied in the fields of image recording, communication, information storage, optical logical devices, and so on. To reduce the cost of the fabrication of holographic grating, instead of liquid crystal, we used methyl methacrylate (MMA), crosslinking agent, and then mixed with diphenyl sulfide(DS). DS is easily miscible with MMA and has high refractive index. Dependence of the parameters such as molar ratio, initiator concentration, incident angle, laser power, film thickness, molecular polarity, and viscosity on the diffraction efficiency, were studied. Effects of both photopolymerization and phase separation on the formation of the optical grating were also investigated. The optimal diffraction efficiency of 30 % was achieved for the fabricated films, which is quite close to the maximum theoretical value of 33.9 % in Raman-Nath regime. Both post exposure baking and ambient temperatures were found to affect the grating formation and diffraction efficiency. The fabricated films confirmed the 5-time multiple recording. Surface morphologies of the recorded optical films were investigated using SEM and SPM. Optimal spatial frequency with grating spacing of 1000 lines/mm was achieved. Furthermore, multiple grating recording with various dimensions were also performed. The results of this investigation suggested that high refractive index component could be used instead of liquid crystals and the photo recordable composition could be applied to both the fields of image recording and information storage.
1. H. J. Eichler, P. Günter, D. W. Pohl, “Laser-Induced Dynamic Gratings”, Vol. 50, Springer-Verlag Berlin Heidelberg New York Tokyo (1986).
2. H. M. Smith, “Holographic Recording Materials“, Vol. 20 , Springer-Verlag Berlin Heidelberg New York (1977).
3. L. M. Soroko, “Holography and Coherent Optics“, Plenum Press New York and London (1980).
4. J. C. Robert, B. B. Christoph, “Optical Holography”, Academic Press New York and London (1971).
5. P. Hariharan, “Basics of Holography”, Cambridge University Press (2002).
6. 李佳榮,液晶-聚合物混合薄膜全像光柵中光耦合動態效應之研究, 國立成功大學物理研究所碩士論文(1999)。
7. 吳阜蒼,光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究,國立成功大學化學工程研究所博士論文(2004)。
8. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, Langmuir, 23, 332-338 (2007)
9. S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T.Shiono, and T. Ikeda, Macromolecules, 35, 8751-8758 (2002).
10. D. Psaltis, Science, 298, 1359-1363 (2002).
11. R. Mallavia, F. Amat-Guerri, A. Fimia, and R. Sastrei, Macromolecules, 27, 2643-2646 (1994).
12. J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, and S. D. Lee, Applied Physics Letters, 86, 021906 (2005).
13. G. D. Filpo, F. P. Nicoletta, M. Macchione, D. Cupelli, and G. Chidichimo, Adv. Funct. Mater., 11(6) (2001).
14. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, J. Am. Chem. Soc., 119, 7791-7796 (1997).
15. M. Eich, J. H. Wendorff, Makromol. Chem., Rapid Commun, 8, 59-63 (1987).
16. T. Ikeda, and O. Tsutsumi, Science, 268(5619), 1873-1875 (1995).
17. H. Yu, K. Okano, A. Shishido, T. Ikeda, K. Kamata, M. Komura, and T. Iyoda, Adv. Mater.,17, 2184-2188 (2005).
18. Y. Zhao, and X. Tong, Adv. Mater., 15(17), 1431-1435 (2003).
19. N. Zettsu, T. Ubukata, T. Seki, and K. Ichmira, Adv. Mater., 13(22), 1693-1697 (2001).
20. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appli. Phys. Lett., 64(9), 1074-1076 (1994).
21. X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, Adv. Mater., 17(3), 370-374 (2005).
22. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, Chem. Mater., 17, 6263-6271 (2005).
23. Y. Kawakami, and Y. H. Cho, Macromol. Symp., 240, 130-140 (2006).
24. N. Suzuki, Y. Tomita, and T. Kojima, Appli. Phys. Lett., 88(22), 4121-4123 (2002).
25. C. Sánchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, Adv. Funct. Mater., 15, 1623-1629 (2005).
26. V. K. S. Hsiao, W. D. Kirkey, F. Chen, A. N. Cartwright, P. N. Prasad, and T. J. Bunning, Adv. Mater., 17, 2211-2214 (2005).
27. G. Odian, “Principle of Polymerization”, Wiley-Interscience (2004).
28. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, Optics Express, 13(13), 4878-4889 (2005).
29. Y. B. Boiko, V. S. Solovjev, S. Calixto, and D. J. Lougnot, Applied Optics, 33(5) (1994).
30. T. N. Smirnova and O. V. Sakhno, Optics and Spectroscopy, 93(1), 126-131 (2002).
31. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, Annu. Rev. Mater. Sci., 30, 83-115 (2000).
32. M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, Proceedings of SPIE, 5521, 137-148 (2004).
33. M. Windholz, “The Merck Index:An Encyclopedia of Chemicals and Drugs”, 9th edition, Merck & Co., Inc. (1976).
34. A. L. McClellan, “Table of Experimental Diploe Moments”, W. H. Freeman and Company (1963).