簡易檢索 / 詳目顯示

研究生: 陳昱汎
Chen, Yu-Fan
論文名稱: 不同粉末製程與其前驅物對富鎳811單晶正極之結構與電化學性質之影響
Influence of Different Powder Processing and Precursors on Structural and Electrochemical Properties of Ni-rich 811 Single-Crystal Cathode
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 65
中文關鍵詞: 鋰離子電池正極材料高鎳層狀結構固相反應法共沉法
外文關鍵詞: lithium ion battery, nickel-rich layered oxides, solid-state method, co-precipitation, crystallinity
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract III Table of contents V List of figures VII List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Introduction to lithium-ion battery cathode materials 3 2-2 Traditional synthesis of nickel-rich layered oxides – Co-precipitation 4 2-3 LiNi0.8Co0.1Mn0.1O2 lithium nickel cobalt manganese oxides 10 2-4 The challenges for Ni-rich layered oxides 11 2-5 Single-crystal NMC and its importance 13 Chapter 3 Motivation and Objectives 15 Chapter 4 Experiment Procedures 17 4-1 Preparations of Ni-rich layered oxides 17 4-1-1 Poly-crystalline layered oxides using Co-precipitation 17 4-1-2 Single-crystalline layered oxides using Solid-state reaction 19 4-2 Characterization of Materials 20 4-2-1 X-ray diffraction analysis 20 4-2-2 X-ray photoelectron spectroscopy analysis 20 4-2-3 Scanning electron microscope analysis 20 4-3 Electrochemical characterization 21 4-3-1 Preparation of electrodes 21 4-3-2 Coin cell assembly 21 4-3-3 Galvanostatic charge-discharge test 22 Chapter 5 Results and discussion 23 5-1 Effect of synthesis route on Ni-rich layered oxides 23 5-1-1 Impact of different precursor on the crystallinity 23 5-1-2 Grain growth behavior within various synthesis route 26 5-1-3 Impact of calcination temperature on crystallinity 31 5-1-4 Charge-discharge Test 36 5-1-5 Summary 39 5-2 Influence of processing parameters with fixed grain size 40 5-2-1 Impact of processing parameters on microstructure 40 5-2-2 The differences on crystallinity within the fixed grain size 42 5-2-3 Charge-discharge analysis 44 5-2-4 Summary 46 Chapter 6 Conclusion 47 Reference 48

    (1) M. Tian, X. Li, Z. Shao and F. Shen, Adv. Mater. Sci. Eng.,2018, 6842694.
    (2) Ohzuku, Tsutomu, and Ralph J.Brodd. "An overview of positive-electrode materials for advanced lithium-ion batteries." Journal of Power Sources 174.2 (2007): 449-456.
    (3) Chen, Xiaopeng, et al."An overview of lithium-ion batteries for electric vehicles." 2012 10th International Power & Energy Conference (IPEC). IEEE, 2012.
    (4) Kim, Junhyeok, et al. "Prospect and reality of Ni‐rich cathode for commercialization." Advanced energy materials 8.6 (2018): 1702028.
    (5) Diouf, Boucar, and Ramchandra Pode. "Potential of lithium-ion batteries in renewable energy." Renewable Energy 76 (2015): 375-380.
    (6) Chakraborty, Arup, et al. "Layered cathode materials for lithium-ion batteries: review of computational studies on LiNi1–x–y Co x Mn y O2 and LiNi1–x–y Co x Al y O2." Chemistry of Materials 32.3 (2020): 915-952.
    (7) Chakraborty, Arup, et al. "Review of computational studies of NCM cathode materials for Li‐ion batteries." Israel Journal of Chemistry 60.8-9 (2020): 850-862.
    (8) Manthiram, Arumugam, Katharine Chemelewski, and Eun-Sung Lee. "A perspective on the high-voltage LiMn 1.5 Ni 0.5 O 4 spinel cathode for lithium-ion batteries." Energy & Environmental Science 7.4 (2014): 1339-1350.
    (9) Yamada, Atsuo, et al. "Olivine-type cathodes: Achievements and problems." Journal of Power Sources 119 (2003): 232-238.
    (10) Endo, Eishi, et al. "A LiCoO2 cathode modified by plasma chemical vapor deposition for higher voltage performance." Journal of the Electrochemical Society 147.4 (2000): 1291.
    (11) Venkatraman, S., and A. Manthiram. "Synthesis and characterization of P3-Type CoO2-δ." Chemistry of materials 14.9 (2002): 3907-3912.
    (12) Kosova, N. V., and E. T. Devyatkina. "Comparative study of LiCoO2 surface modified with different oxides." Journal of power sources 174.2 (2007): 959-964.
    (13) Sicklinger, Johannes, et al. "Ambient storage derived surface contamination of NCM811 and NCM111: performance implications and mitigation strategies." Journal of The Electrochemical Society 166.12 (2019): A2322-A2335.
    (14) Salitra, Gregory, et al. "High-performance cells containing lithium metal anodes, LiNi0. 6Co0. 2Mn0. 2O2 (NCM 622) cathodes, and fluoroethylene carbonate-based electrolyte solution with practical loading." ACS applied materials & interfaces 10.23 (2018): 19773-19782.
    (15) Neudeck, Sven, et al. "Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells." ACS applied materials & interfaces 10.24 (2018): 20487-20498.
    (16) Huang, Binhua, et al. "An efficient synthetic method to prepare high-performance Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 for lithium-ion batteries." ACS Applied Energy Materials 2.10 (2019): 7403-7411.
    (17) Zhang, Hailin, and Jiujun Zhang. "An overview of modification strategies to improve LiNi0· 8Co0· 1Mn0· 1O2 (NCM811) cathode performance for automotive lithium-ion batteries." ETransportation 7 (2021): 100105.
    (18) Liu, Xiangsi, et al. "Constructing a high-energy and durable single-crystal NCM811 cathode for all-solid-state batteries by a surface engineering strategy." ACS applied materials & interfaces 13.35 (2021): 41669-41679.
    (19) Sannyal, Arindam, et al. "Stabilizing a nickel-rich (LiNi0. 89Co0. 055Mn0. 055O2) cathode material by doping zirconium or molybdenum: a first-principles study." The Journal of Physical Chemistry C 125.50 (2021): 27543-27555.
    (20) Huang, Jingyan, et al. "Non-Flammable fluorinated gel polymer electrolyte for safe lithium metal batteries in harsh environments." Journal of Colloid and Interface Science 683 (2025): 984-993.
    (21) Muralidharan, Nitin, et al. "Next‐generation cobalt‐free cathodes–a prospective solution to the battery industry's cobalt problem." Transition Metal Oxides for Electrochemical Energy Storage (2022): 33-53.
    (22) Li, Wangda, et al. "Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study." Chemistry of Materials 32.18 (2020): 7796-7804.
    (23) Lin, Yenchen, et al. "Earth‐Abundant Spinel LiMn2O4 Cathode for Lithium‐Ion Batteries: Challenges, Strategies, and Perspectives." Small Methods (2025): 2402233.
    (24) Radzi, Z. Iskandar, et al. "Review of spinel LiMn2O4 cathode materials under high cut-off voltage in lithium-ion batteries: Challenges and strategies." Journal of Electroanalytical Chemistry 920 (2022): 116623.
    (25) Kandhasamy, Sathiyaraj, Kalaiselvi Nallathamby, and Manickam Minakshi. "Role of structural defects in olivine cathodes." Progress in Solid State Chemistry 40.1-2 (2012): 1-5.
    (26) Yamada, Atsuo, et al. "Olivine-type cathodes: Achievements and problems." Journal of Power Sources 119 (2003): 232-238.
    (27) Ling, Jin Kiong, and Rajan Jose. "Metal oxide composite cathode material for high energy density batteries." Chemically Deposited Nanocrystalline Metal Oxide Thin Films: Synthesis, Characterizations, and Applications. Cham: Springer International Publishing, 2021. 509-530.
    (28) Yang, Zeheng, et al. "Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries." Journal of Power Sources 272 (2014): 144-151.
    (29) Kauppinen, Toni, et al. "Co‐precipitation of NCM 811 Using Recycled and Purified Manganese: Effect of Impurities on the Battery Cell Performance." ChemElectroChem 10.17 (2023): e202300265.
    (30) Pradanawati, Sylvia Ayu, et al. "A Comparative Study on The Electrochemical Properties of Hydrothermal and Solid-State Methods in The NCM Synthesis for Lithium Ion Battery Application." ASEAN J. Chem. Eng 22.2 (2022): 284-295.
    (31) Ma, Chao, and Shuang-Yuan Tan. "Hydrothermal synthesis and electrochemical performance of micro-spherical LiNi1/3Co1/3Mn1/3O2 cathode material." International Journal of Electrochemical Science 15.9 (2020): 9392-9401.
    (32) Zhang, Yinjia, et al. "Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary particle for alleviating microcracks." Journal of Power Sources 477 (2020): 228701.
    (33) Cao, Xiaoyu, et al. "Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method." International Journal of Electrochemical Science 11.6 (2016): 5267-5278.
    (34) Guo, Jia, and Wei Li. "Synthesis of single-crystal LiNi0.7Co0.15Mn0.15O2 materials for Li-ion batteries by a sol–gel method." ACS Applied Energy Materials 5.1 (2021): 397-406.
    (35) Saaid F I, Kasim M F, Winie T, et al. Ni-rich lithium nickel manganese cobalt oxide cathode materials: A review on the synthesis methods and their electrochemical performances[J]. Heliyon, 2024, 10(1).
    (36) Wu, Zhaowei, et al. "Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries." Ceramics International 49.10 (2023): 15851-15864.
    (37) Lee, Suhyun, et al. "Co-precipitation of high nickel NCM precursor using Taylor-Couette reactor and its characteristics in lithium-ion battery." Solid State Ionics 386 (2022): 116042.
    (38) Ren, Dong, et al. "Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries." ACS applied materials & interfaces 9.41 (2017): 35811-35819.
    (39) Zheng J, Yan P, Estevez L, et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.1O2 cathodes for lithium-ion batteries[J]. Nano Energy, 2018, 49: 538-548.
    (40) Behrens M. Coprecipitation: An excellent tool for the synthesis of supported metal catalysts–From the understanding of the well known recipes to new materials[J]. Catalysis Today, 2015, 246: 46-54.
    (41) Jiao Z B, Luan J H, Miller M K, et al. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era[J]. Materials Today, 2017, 20(3): 142-154.
    (42) Deraz N M. The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods[J]. J. Ind. Environ. Chem, 2018, 2(1): 19-21.
    (43) Zhang H, Zhang J. An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries[J]. ETransportation, 2021, 7: 100105.
    (44) Yang C, Zhu Z, Wei W, et al. Superior cycle stability of single crystal nickel-rich layered oxides with micron-scale grain size as cathode material for lithium ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(6): 5031-5041.
    (45) de Biasi L, Schwarz B, Brezesinski T, et al. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni‐Rich NCM and Li‐Rich HE‐NCM cathode materials in Li‐Ion batteries[J]. Advanced materials, 2019, 31(26): 1900985.
    (46) Zhang N, Wang B, Chen M, et al. Revisiting the impact of Co at high voltage for advanced nickel-rich cathode materials[J]. Energy Storage Materials, 2024, 67: 103311.
    (47) Shaju K M, Rao G V S, Chowdari B V R. Performance of layered Li (Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48(2): 145-151.
    (48) Xiao J, Chernova N A, Whittingham M S. Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries[J]. Chemistry of Materials, 2008, 20(24): 7454-7464.
    (49) Yang D, Li X, Wu N, et al. Effect of moisture content on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2/graphite battery[J]. Electrochimica Acta, 2016, 188: 611-618.
    (50) Mayer J K, Huttner F, Heck C A, et al. Investigation of moisture content, structural and electrochemical properties of nickel-rich NCM based cathodes processed at ambient atmosphere[J]. Journal of The Electrochemical Society, 2022, 169(6): 060512.
    (51) Zhang X, Jiang W J, Mauger A, et al. Minimization of the cation mixing in Li1+ x (NMC) 1− xO2 as cathode material[J]. Journal of Power Sources, 2010, 195(5): 1292-1301.
    (52) Duan Y, Chen S P, Zhang L, et al. Review on oxygen release mechanism and modification strategy of nickel-rich NCM cathode materials for lithium-ion batteries: Recent advances and future directions[J]. Energy & Fuels, 2024, 38(7): 5607-5631.
    (53) Geldasa F T, Kebede M A, Shura M W, et al. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review[J]. RSC advances, 2022, 12(10): 5891-5909.
    (54) Wu C, Li R, Chen T, et al. Understanding of the irreversible phase transition and Zr-doped modification strategy for a nickel-rich cathode under a high voltage[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3651-3660.
    (55) Ni L, Zhang S, Di A, et al. Challenges and strategies towards single‐crystalline Ni‐Rich layered cathodes[J]. Advanced energy materials, 2022, 12(31): 2201510.
    (56) Hu J, Wang H, Xiao B, et al. Challenges and approaches of single-crystal Ni-rich layered cathodes in lithium batteries[J]. National Science Review, 2023, 10(12): nwad252.
    (57) Zhang H, He X, Chen Z, et al. Single‐Crystalline Ni‐Rich LiNixMnyCo1− x− yO2 Cathode Materials: A Perspective[J]. Advanced Energy Materials, 2022, 12(45): 2202022.
    (58) Trevisanello E, Ruess R, Conforto G, et al. Polycrystalline and single crystalline NCM cathode materials—quantifying particle cracking, active surface area, and lithium diffusion[J]. Advanced Energy Materials, 2021, 11(18): 2003400.
    (59) Deng X, Zhang R, Zhou K, et al. A comparative investigation of single crystal and polycrystalline Ni‐Rich NCMs as cathodes for lithium‐ion batteries[J]. Energy & Environmental Materials, 2023, 6(3): e12331.
    (60) Huang Z D, Liu X M, Oh S W, et al. Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(29): 10777-10784.
    (61) Liu G, Li M, Wu N, et al. Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0. 6Co0.2Mn0.2O2 electrodes[J]. Journal of the electrochemical society, 2018, 165(13): A3040.
    (62) Zhang P, Liu Z, Ma B, et al. Improving the single crystal LiNi0.8Co0.1Mn0.1O2 cathode material performance by fluorine doping[J]. Ceramics International, 2021, 47(23): 33843-33852.
    (63) Zhang X, Zhang Y, Liu J, et al. Syntheses, challenges and modifications of single-crystal cathodes for lithium-ion battery[J]. Journal of Energy Chemistry, 2021, 63: 217-229.
    (64) Dang R, Qu Y, Ma Z, et al. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries[J]. The Journal of Physical Chemistry C, 2021, 126(1): 151-159.
    (65) Yan J, Huang H, Tong J, et al. Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization[J]. Interdisciplinary Materials, 2022, 1(3): 330-353.
    (66) Qin Z, Wen Z, Xu Y, et al. A ternary molten salt approach for direct regeneration of LiNi0. 5Co0. 2Mn0. 3O2 cathode[J]. Small, 2022, 18(43): 2106719.
    (67) Min K, Seo S W, Song Y Y, et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials[J]. Physical chemistry chemical physics, 2017, 19(3): 1762-1769.
    (68) Habibi A, Jalaly M, Rahmanifard R, et al. The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li (Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries[J]. New Journal of Chemistry, 2018, 42(23): 19026-19033.
    (69) Lu Z, Huang X, Huang H, et al. The phase transition and optimal synthesis temperature of LiNiO2[J]. Solid State Ionics, 1999, 120(1-4): 103-107.

    無法下載圖示 校內:2030-08-14公開
    校外:2030-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE