簡易檢索 / 詳目顯示

研究生: 薛仁揚
Xue, Ren-Yang
論文名稱: 以溶膠-凝膠法製備鋯鎳酸鍶薄膜於電阻式記憶體之應用及機制探討
Characteristics of Sol-Gel Strontium Zirconate Nickelate Thin Films for Resistive Random Access Memory Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 電阻式記憶體溶膠凝膠法鋯鎳酸鍶
外文關鍵詞: Resistive random access memory, sol-gel, strontium zirconate nickelate
相關次數: 點閱:191下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶膠凝膠法製備新穎溶液式鋯鎳酸鍶介電材料於電阻式記憶體應用上,成功以Al/SZN/ITO之簡易的金屬/絕緣層/金屬結構製備出俱優異記憶體特性之電阻式記憶體,如:高低電阻值比(>105)、低寫入及抹除電壓(-2V及2.8V) 、低功率消耗(6.6 W/cm2) 、在室溫及工作溫度下穩定且長時間的資料儲存能力(>105s)。而本研究藉由添加之鎳元素於鋯酸鍶介電材料上,不僅改善了薄膜品質(RMS=0.75)也大幅提升了原鋯酸鍶記憶體之電性表現。最後在機制探討部分,本研究也直接藉由導電式原子力顯微鏡(C-AFM)觀察導電路徑之形成,並且配合阻值升溫測試來驗證電阻轉換之機制。

    Strontium zirconate nickelate (SZN) prepared by sol-gel method for resistive random access memory (RRAM)applications is presented. The Al/SZN/ITO/Glass RRAM showed a resistance ratio larger than 105, low operation voltage(Vwrite=-2V, Verase=2.8V), low power density of 6.6 W/cm2, and device stability of more than 105 s. Compared to the strontium zirconate RRAM, the improvement of the resistive switching characteristics in SZN RRAM can be seen. Adding Ni to strontium zirconate can result in smoother surface(RMS=0.75) and higher uniformity. The influence of Ni on the conducting paths and the bipolar resistive switching properties of Al/SZN/ITO/Glass RRAM devices are investigated.

    Contents 摘要 I Abstract II 誌謝 III Contents V Figure Captions VIII Table Captions X Chapter 1 Introduction 1 1-1 Background and motivation 1 1-2 Organization of thesis 3 Chapter 2 Literature Survey 4 2-1 Introduction of non-volatile memory 4 2-2 Candidates 5 2-2-1 FeRAM(Ferroelectric RAM) 5 2-2-2 MRAM(Magnetic RAM) 6 2-2-3 PCRAM(Phase change RAM) 8 2-2-4 RRAM(Resistive RAM) 10 2-3 RRAM(Resistive random-access memory) 11 2-3-1 Insulator materials 12 2-3-1-1 Pervoskite materials 12 2-3-1-2 Organic materials 13 2-3-1-3 Transition metal oxide 13 2-3-2 Resistive switching phenomena 14 2-3-2-1 Principle of RRAM 15 2-3-2-2 Switching modes 17 2-3-3 Mechanism of RRAM 18 2-3-3-1 Filament theory 18 2-3-3-2 Electrochemical metallization effect 19 2-3-3-3 Redox processes 20 2-3-3-4 Thermalchemical effect 21 2-3-4 Mechanism of dieletric breakdown 25 2-3-4-1 Tunneling effect 25 2-3-4-2 Schottky emission 26 2-3-4-3 Poole-Frenkel emission 27 2-3-4-4 Ohmic conduction 28 2-3-4-5 Space-charge-limited conduction 29 Chapter 3 Experiment 32 3-1 Sol-gel process 32 3-1-1 Experimental materials 32 3-2 Fabrication and measurment equipments 36 3-2-1 Sputter 36 3-2-2 Vaccum oven 36 3-2-3 Spin coater 37 3-3 Experimental procedures 39 3-3-1 Substrate cleaning 39 3-3-2 Bottom electrode 39 3-3-3 Insulator layer 40 3-3-3-1 Solution preparation 40 3-3-3-2 Experiment of insulator 40 3-3-4 Top electrode 41 3-4 Physical characteristics 43 3-4-1 Scanning Electron Microscopy (SEM) 43 3-4-2 Atomic Force Microscope (AFM) 43 3-4-3 X-ray Photoelectron Spectroscopy (XPS) 44 3-4-4 X-ray Diffraction (XRD) 44 3-4-5 Ultraviolet and Visible(UV/VIS) Spectrophotometer 44 3-5 Electrical characteristics 47 3-5-1 Current-Voltage(I-V) measurement47 3-5-2 Retention characteristics 47 3-5-3 Endurance characteristics 47 3-5-4 Resistance-Temperature(R-T) measurement 47 Chapter 4 Results and discussion 48 4-1 Physical properties of SZN film 48 4-1-1 Chemical composition analysis 48 4-1-2 X-ray diffraction analysis 48 4-1-3 Surface morphology 50 4-1-4 Film thickness 52 4-1-5 Transmittance 52 4-2 Electrical properties of SZN-based RRAM device 55 4-2-1 I-V measurement 55 4-2-1-1 Different chemical composition 55 4-2-1-2 Different sintering temperature 57 4-2-1-3 Different film thickness 60 4-2-1-4 Different top electrode 62 4-2-1-5 Comparison 66 4-2-2 Conduction mechanism 68 4-2-2-1 Curve fitting 68 4-2-2-2 Resistance-Temperature(R-T) characteristics 70 4-2-2-3 C-AFM analysis 71 4-2-3 Reliability test 73 4-2-3-1 Retention characteristics 73 4-2-3-2 Uniformity 73 4-2-3-3 Endurance characteristics 74 4-2-4 Power consumption 77 Chapter 5 Conclusions and Future prospects 79 5-1 Conclusions 79 5-2 Future prospects 79 References 81

    [1] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139-141, 2000.
    [2] M. H. Lin, M. C. Wu, Y. H. Huang, C. H. Lin and T. Y. Tseng, “High device yield of resistive switching characteristics in oxygen-annealed SrZrO3 memory devices,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1182-1188, 2011.
    [3] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin and T. Y. Tseng, “Resistive switching mechanisms of V-Doped SrZrO3 memory films,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 725-727, 2006.
    [4] J. W. Park, M. K. Yang, K. Jung and J. K. Lee, “Effects of switching parameters on resistive switching behaviors of polycrystalline SrZrO3:Cr-based metal–oxide–metal structures,” IEEE Trans. Electron Devices, vol. 55, no. 7, pp. 1782-1786, 2008.
    [5] J. Wu, Z. Wen, D. Wu, H. Zhai and A. Li, “Current–voltage characteristics of sol–gel derived SrZrO3 thin films for resistive memory applications,” J. Alloys Compounds, vol. 509, pp. 2050-2053, 2011.
    [6] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee and T. W. Noh, “Random circuit breaker network model for unipolar resistance switching,” Adv. Mater., vol. 20, no. 6, pp. 1154-1159, 2008.
    [7] V. V. Kharton, A. P. Viskup, E. N. Naumovich and V. N. Tikhonovich, “Oxygen permeability of LaFe1-xNixO3-δ solid solutions,” Mater. Res. Bull., vol. 34, no. 8, pp. 1311-1317, 1999.
    [8] Z. Zhao, X. Yang and Y. Wu, “Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO,” Appl. Catal. B, vol. 8, pp. 281-297, 1996.
    [9] Y. C. Chang, Y. Y. Chang, C. Y. Wei and Y. H. Wang, “Novel solution-processed strontium zirconate nickelate insulators synthesized by sol-gel methods for pentacene-based thin film transistors,” IEEE Tr. Electron Device, vol. 60, no. 12, pp. 4234-4239, 2013.
    [10] http://www.lapis-semi.com/en/semicon/feram/
    [11] Y. C. Chen, C. T. Chen, J. Y. Yu, C. Y. Lee, C. F. Chen and S. L. Lung, “180 nm Sn-doped Ge2Sb2Te5 chalcogenide phasechange memory device for low power, high speed embedded memory for SoC applications,” IEEE Custom Integrated Circuits Conference, pp. 395-398, 2003.
    [12] C. H. Cheng, A. Chin and F. S. Yeh, “Ultralow-power Ni/GeO/STO/TaN resistive switching memory,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 1020-1022, 2010.
    [13] D. j. Seong, J. Park, N. Lee, M. Hasan1, S. Jung, H. Choi1, J. Lee, M. Jo1, W. Lee, S. Park, S. Kim, Y. H. Jang, Y. Lee, M. Sung, D. Kil, Hwang, S. Chung, S. Hong, J. Roh and H. Hwang, “Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications,” IEEE Electron Devices Meeting, pp. 1-4, 2009.
    [14] C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, “Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr Layer,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1108-1111, 2008.
    [15] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang and Y. Wang, “Record low-power organic RRAM with sub-20-nA reset current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 223-225, 2013.
    [16] F. Argall, “Switching phenomena in titanium oxide thin films”, Solid-State Electron., vol. 11, pp. 535-541, 1968.
    [17] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim and B. H. Park, “Switching phenomena in titanium oxide thin films,” Appl. Phys. Lett., vol. 86, p. 093509, 2005.
    [18] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 719-721, 2005.
    [19] M. H. Tang, Z. P. Wang, J. C. Li, Z. Q. Zeng, X. L. Xu, G. Y. Wang, L. B. Zhang, Y. G. Xiao, S. B. Yang, B. Jiang and J. He, “Bipolar and unipolar resistive switching behaviors of sol-gel-derived SrTiO3 thin films with different compliance currents,” Semicond. Sci. Technol., vol. 26, p. 75019, 2011.
    [20] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28-36, 2008
    [21] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen and M. J. Tsai, “Metal oxide RRAM,” Proc. IEEE, vol. 100, No. 6, pp. 1951-1970, 2012.
    [22] D. H. Yoon, S. J. Kim, J. Jung, H. S. Lim and H. J. Kim, “Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles,” J. Mater. Chem., vol. 22, pp. 17568-17572, 2012.
    [23] K. K. Chiang, J. S. Chen and J. J. Wu, “Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,” Appl. Mater. Interfaces, vol. 4, pp. 4237-4245, 2012
    [24] J. Jang, F. Pan, K. Braam and V. Subramanian, “Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications,” Adv. Mater., vol. 24, pp. 3573-3576, 2012.
    [25] C. Ye, C. Zhan, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, T. Deng and H. Wang, “Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon,” Appl. Phys. Express., vol. 7, p.034101, 2014.
    [26] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater., vol. 6, pp. 833-840, 2007
    [27] H. A. Fowler, J. E. Devaney and J. G. Hagedorn, “Growth model for filamentary streamers in an ambient field,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 1, 2003.
    [28] M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng,“Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1801-1808, 2010.
    [29] H. T. Lin, Z. Pei and Y. J. Chan, “Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Lett., vol. 28, no. 7, pp. 569-571, 2007.
    [30] A. Gerlach, S. Sellner, S. Kowarik and F. Schreiber, “In-situ x-ray scattering studies of OFET interfaces,” Phys. Stat. Sol. A., vol. 205, no. 3, pp. 461-474, 2008.
    [31] J. A. Lewis, E. B. Duoss and M. Twardowski, “Sol-gel inks,” U. S. patent, 0245266A1, 2008.
    [32] C. Y. Tsay, K. S. Fan and C. M. Lei, “Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films,” J. Alloys Compounds, vol. 512, pp. 216-222, 2012.
    [33] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO2,” Appl. Phys. Lett., vol. 88, no. 23, pp. 232106, 2006.
    [34] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu and T. Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366-368, 2007.
    [35] G. D. Sharma, V. S. Choudhary and M. S. Roy, “Effect of annealing on the optical, electrical, and photovoltaic properties of bulk hetero-junction device based on PPAT:TY blend,” Sol. Energ. Mat. Sol., vol. 91, no. 4, pp. 275-284, 2007.
    [36] H. Lv, M. Wang, H. Wan, Y. Song and W. Luo, “Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode,” Appl. Phys. Lett., vol. 94, p. 213506, 2009.
    [37] Q. Liu, W. H. Guan, S. B. Long, R. Jia, M. Liu and J. N. Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, p. 012117, 2008.
    [38] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang and F. Pan, “Reproducible and controllable organic resistive memory based on Al/ poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, p. 253301, 2010.
    [39] K. Jung, H. Seo, Y. Kim, H. Im, J. Hong, J. W. Park and J. K. Lee, “Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films,” Appl. Phys. Lett., vol. 90, no. 5, p. 052104, 2010.
    [40] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu and Y. C. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1442-1444, 2011.
    [41] C. Y. Liu and T. Y. Tseng, “Resistance switching properties of sol–gel derived SrZrO3 based memory thin films,” J. Phys. D: Appl. Phys., vol. 40, pp. 2157-2161, 2007.
    [42] J. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, T. A. Tang, H. M. Wu and M. H. Chi, “In situ observation of compliance-current overshoot and its effect on resistive switching,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 246-248, 2010.

    下載圖示 校內:2019-07-29公開
    校外:2019-07-29公開
    QR CODE