簡易檢索 / 詳目顯示

研究生: 賴盈勳
Lai, Ying-Xun
論文名稱: 雲端多媒體行動動態適應串流之研究
Study on Dynamic Adaptation System for Mobile Streaming on Cloud Media
指導教授: 黃悅民
Huang, Yueh-Min
王明習
Wang, Ming-Shi
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 86
中文關鍵詞: 雲端多媒體行動串流動態適應
外文關鍵詞: Cloud Media, Mobile Streaming, Dynamic Adaptation
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲端多媒體提供了一種有效率地(Efficient)、有彈性地(Flexible) 及具可延展 (Scalable)的資料處理方式,其對今日使用者對於多媒體之高品質及多樣化之需求提供了一種解決方式。另一方面,隨著智慧型手機及無線網路的普及,使用者不再僅能在家中使用網路服務,他們更可透過行動裝置,便可輕易地取得多媒體訊息,享受無所不在(Ubiquitous)的網路服務。然而對於現今行動串流所存在著有限制的頻寬與對於不同行動裝置之硬體條件所能提供之多媒體服務需求。本研究主要針對在雲端多媒體行動網路串流服務中,其多媒體包含數種串流來源可供選擇時,根據硬體與網路環境等條件,選擇最適當的解析度與位元率來進行串流播放。本研究並設計一套動態串流調整機制,該機制將根據現今串流頻寬的使用及穩定度,動態調整預測頻率及輪詢時間,並針對使用者觀賞品質、硬體條件與硬體運算能力等條件進行評估,並決策出對使用者而言較為適當之多媒體來源,並修正整體多媒體串流撥放序列建構無縫動態轉換播放服務,有效提升整體的播放品質。同時以其行動裝置端之系統觀點來規劃整體平行低功耗設計,並於不破壞原本解碼流程的情況下,根據串流傳輸之即時性考量控管系統多媒體暫存區塊,並透過動態電壓及頻率系統調整系統解碼工作排程時間以減少多媒體資料相依的問題。最後本研究實現此架構雛型以驗證本方法之可行性,根據實驗可發現所提出之方法對於變動之頻寬環境將可提供有效率之動態適應多媒體串流服務。

    Cloud multimedia services provide an efficient, flexible, and scalable media processing. It also stands a key solution for high quality and various multimedia services. At the same time, mobile phones become more and more popular, and network technology for users are no longer limited to the home. The users can easily enjoy the ubiquitous multimedia service by using mobile devices. However, the delays and lags resulted from the instability of a mobile network will greatly degrade streaming quality for users. Considering the present limited bandwidth available for mobile streaming and different device requirements, this study presented dynamic adaptive approach that provides multimedia data suitable for a terminal unit environment for mobile streaming services, when there are multiple optional streaming sources in the cloud mobile network, the optimal resolution and bit rate cannot be selected for playing, according to the hardware and network status conditions. And it describes a parallel low-power design on the system level. Under the condition of preserving the original decoding process, we manage the size of the system’s multimedia buffer by considering the spontaneous streaming transfer and tuning the decoding process scheduling time by using the Dynamic Voltage Frequency Scaling (DVFS) system in order to decrease the multimedia data dependency and achieve a multi-core embedded system with accurate and low-power detection mechanism. Finally, this study realized a prototype of this architecture to validate the feasibility of the proposed method. According to the experiment, this method could efficiently improve the overall streaming source sequence to dynamically construct seamless converted play service to effectively upgrade overall streaming quality.

    摘要 I Abstract IV Acknowledgement V List of Figures VIII Chapter 1 Introduction 1 1.1 Research Objectives 3 1.1.1 Cloud-assisted Real-Time Transrating for Mobile Streaming 3 1.1.2 Improving the Performance of Cloud Media Streaming on Mobile Platform 4 1.1.3 An Adaptive Energy-Efficient Stream Decoding System for Cloud Multimedia Network on Multi-core Architectures 5 1.2 Organization of the Dissertation 5 Chapter 2 Background and Related Work 6 2.1 Apples HTTP Live Streaming 6 2.2 Related SVC Multimedia Service 9 2.3 Android Multimedia Framework 12 2.4 Review of Cloud Media Research 15 2.5 Adaptive Mobile Network Streaming 18 2.6 Dynamic Voltage and Frequency Scaling 19 Chapter 3 Cloud-assisted Real-time Transrating for Mobile Streaming 22 3.1 Introduction 22 3.2 Proposed Cloud-assisted Real-Time Adaptive Transcoding System 23 3.2.1 Real-time Transrating Decision Mechanism 24 3.2.2 System Flow 28 3.3 HLS Experiment Result and Analysis 29 3.3.1 Bandwidth Utilization Rate of Streaming Device 30 3.3.2 Analysis of Video Quality 35 3.4 SVM Experiment Result and Analysis 40 3.4.1 Video Quality Experiment 42 3.5 Summary 45 Chapter 4 Improving the Performance of Cloud Media Streaming on Mobile Platform 46 4.1 Introduction 46 4.2 System Design and Methods 47 4.2.1 Dynamic Network Bandwidth Evaluation Mechanism Improvement 47 4.2.2 Dynamic Polling Download Mechanism Improvement 50 4.2.3 Discontinuous Transcoding Time Stamp 53 4.3 Experiment Result and Analysis 54 4.3.1 Dynamic Bandwidth Prediction Performances 55 4.3.2 The Experiment of Video Quality 56 4.3.3 User's Viewing Quality Analysis 60 4.4 Summary 61 Chapter 5 An Adaptive Energy-Efficient Stream Decoding System for Cloud Multimedia Network on Multi-core Architectures 63 5.1 Introduction 63 5.2 System Architecture Introduction 64 5.2.1 System Overview 64 5.2.2 Parallel DVFS on Stream Decoding 65 5.3 DVFS Module Implementation Architecture 65 5.3.1 DVFS Algorithm for Independent Frame 66 5.3.2 DVFS Algorithm for Dependent Frames 68 5.4 System Implementation and Analysis 68 5.4.1 Relation between Decoding Time and Film Size 70 5.4.2 Influence of Bitrate on Energy Consumption 72 5.4.3 Analysis of Deadline Miss 73 5.4.4 Analysis of Decoding Time 75 5.5 Summary 77 Chapter 6 Conclusion and Future Works 78 6.1 Conclusion 78 6.2 Future Works 78 References 79

    [1] A. Weiss, "Computing in the clouds," Networker Journal, Vol. 11, No. 4, pp, 16-25, 2007.
    [2] M.F. Tan and X. Su, ”Media Cloud: When Media Revolution Meets Rise of Cloud Computing,” In Proc. of IEEE 6th International Symposium on Service Oriented System Engineering, pp. 251 - 261, 2011.
    [3] W. Zhu, C. Luo, J.F. Wang, S.P. Li, ”Multimedia Cloud Computing,” IEEE Signal Processing Magazine, Vol. 28, No. 3, pp. 59 69, 2011.
    [4] D. Diaz-Sanchez, F. Almenares, A. Marin, and D. Proserpio, ”Media Cloud: Sharing Contents in the Large,” In Proc. of IEEE International Conference on Consumer Electronics (ICCE), pp. 227-228, 2011.
    [5] S. Ferretti, V. Ghini, F. Panzieri, and E. Turrini, ”Seamless Support of Multimedia Distributed Applications Through a Cloud,” In Proc. of IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 548-549, 2010.
    [6] A. Manjunatha, A. Ranabahu, A. Sheth, K. Thirunarayan, ”Power of Clouds in Your Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,” In Proc. of IEEE Second International Conference on Cloud Computing Technology and Science, pp. 496 - 503, 2010.
    [7] A. Khan and K.K. Ahirwar, ”Mobile Cloud Computing as a Future of Mobile Multimedia Database,” International Journal of Computer Science and Communication, Vol. 2, No. 1, pp. 219-221, 2011.
    [8] Ricky K. K. Ma, K. T. Lam, and C. L. Wang, ”eXCloud: Transparent Runtime Support for Scaling Mobile Applications in Cloud,” In Proc. of International Conference on Cloud and Service Computing, pp. 103-110, 2011.
    [9] K. E. Psannis, Y. Ishibashi, and M. G. Hadjinicolaou, ”Qos for Wireless Interactive Multimedia Streaming,” In Proc. of ACM Workshop on QoS and Security for Wireless and Mobile Networks, pp. 168-171, 2007.
    [10] S. M. Saranya and M. Vijayalakshmi, ”Interactive Mobile Live Video Learning System in Cloud Environment,” In Proc. of International Conference on Recent Trends in Information Technology (ICRTIT), pp. 673-677, 2011.
    [11] H. Choi, J. W. Kang, and J. G. Kim, ”Dynamic and Interoperable Adaptation of SVC for QoS-Enabled Streaming,” IEEE Transactions on Consumer Electronics, Vol. 53, No. 2, pp. 384-385, 2007.
    [12] Z. Huang, C. Mei, L.E. Li, and T. Woo, ”CloudStream: Delivering High-quality Streaming Videos through a Cloud-based SVC Proxy,” In Proc. of IEEE INFOCOM, pp. 201 - 205, 2011.
    [13] L.N. Zhang, C. Yuan, and Y.Z. Zhong, ”A Novel SVC VoD System with Rate Adaptation and Error Concealment over GPRS/EDGE Network,” Congress on Image and Signal Processing, Vol. 1, pp. 349 - 354, 2008.
    [14] P. Chen, Jeongyeon, L. B. Lee, M. Kim, S. Hahm, B. Kim, K. Lee, and K. Park, ”A network-adaptive SVC Streaming Architecture,” In Proc. of International Conference on Advanced Communication Technology, Vol. 2, pp. 955-960, 2007.
    [15] N. Ramos and S. Dey, ”A Device and Network-Aware Scaling Framework for Efficient Delivery of Scalable Video over Wireless Networks,” In Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1-5, 2007.
    [16] “Android Supported Media Formats”, http://developer.android.com/guide/appendix/media-formats.html, retrieved on on June 2013.
    [17] D. Vatolin, D. Kulikov, A. Parshin, M. Arsaev, and A. Voronov, “MPEG-4 AVC/H.264 Video Codecs Comparison”, http://www.compression.ru/video/codec_comparison/h264_2011/mpeg-4_avc_h264_video_codecs_comparison.pdf , retrieved on on June 2013.
    [18] J. Z. Chen, “Design and Integration of DVB-T Playback into Android OpenCORE on Heterogeneous Multicore Platform”, Taiwan: NCKU, July 2012.
    [19] C. Y. Liu, “Android Stagefright Performance Enhancement and Dynamic Streaming Adjustment Mechanism on Heterogeneous Multicore Platform”, Taiwan: NCKU, July 2012.
    [20] W. Song, J. Hai, C. Jie, and F. Kaiqin, ”A Novel Cache Scheme for Cluster-based Streaming Proxy Server,” In Proc. of IEEE International Conference on Distributed Computing Systems Workshops, pp. 727-733, 2005.
    [21] Y. Hang, C. C. J. Kuo, and I. Ahmad, ”Energy Efficiency in Data Centers and Cloud-based Multimedia Services: An Overview and Future Directions,” In Proc. of International in Green Computing Conference, pp. 375-382, 2010.
    [22] P. Fan, J. Wang, Z. Zheng, and M.R. Lyu, ”Toward Optimal Deployment of Communication-Intensive Cloud Applications,” In Proc. of IEEE International Conference on Cloud Computing, pp. 460 467, 2011.
    [23] Z. Zheng, Y. Zhang, and M.R. Lyu, ”Cloudrank: A Qos-driven Component Ranking Framework for Cloud Computing,” In Proc. of IEEE Symposium on Reliable Distributed Systems, pp. 18493, 2010.
    [24] D. Diaz-Sanchez, F. Almenarez, A. Marin, D. Proserpio, and P. A. Cabarcos, ”Media Cloud: An Open Cloud Computing Middleware for Content Management,” IEEE Transactions on Consumer Electronics, Vol. 57, pp. 970-978, 2011.
    [25] J. Feng, P. Wen, J. Liu, and H. Li, ”Elastic Stream Cloud (ESC): A Stream-oriented Cloud Computing Platform for Rich Internet Application,” In Proc. of International Conference on High Performance Computing and Simulation (HPCS), pp. 203-208, 2010.
    [26] A. Garcia and H. Kalva, ”Cloud Transcoding for Mobile Video Content Delivery,” In Proc. of 2011 IEEE International Conference on in Consumer Electronics (ICCE), pp. 379-380, 2011.
    [27] X. Jin and Y.K. Kwok, ”Cloud Assisted P2P Media Streaming for Bandwidth Constrained Mobile Subscribers,” In Proc. of IEEE International Conference on Parallel and Distributed Systems, pp. 800 - 805, 2010.
    [28] I. Trajkovska, J. Salvachu´ a, and A. M. Velasco, ”A Novel P2P and Cloud Computing Hybrid Architecture for Multimedia Streaming with QoS Cost Functions,” In Proc. of ACM Multimedia, pp. 1227 - 1230, 2010.
    [29] Y. Liu, Z. Yang, X. Deng, J. Bu, and C. Chen, ”Media Browsing for Mobile Devices based on Resolution Adaptive Recommendation,” In Proc. of International Conference on Communications and Mobile Computing, pp. 285-290, 2009.
    [30] W. Yin, X. Zhu, and C. W. Chen, ”Contemporary Ubiquitous Media Services: Content Recommendation and Adaptation,” In Proc. of IEEE PerCom Workshop on Pervasive Communities and Service Clouds, pp. 129 - 134, 2011.
    [31] C.F. Lai and M. Chen, ”Playback-Rate Based Streaming Services for Maximum Network Capacity in IP Multimedia Subsystem,” IEEE System Journal, Vol. 5, No. 4, pp. 555 - 563, 2010.
    [32] C.F. Lai and A.V. Vasilakos, ”Mobile Multimedia Services over Cloud Computing,” IEEE COMSOC MMTC E-Letter, Vol.5, No.6, 2010.
    [33] S.Y. Chang, C.F. Lai, and Y.M. Huang, ”Dynamic Adjustable Multimedia Streaming Service Architecture over Cloud Computing,” Computer Communications, Vol. 35, No. 15, pp. 1798–1808, 2012.
    [34] “The Next Big Thing in Video: Adaptive Bitrate Streaming,” http://pro.gigaom.com/2009/06/how-to-deliver-as-much-video-as-users-can-take/, retrieved on June 2012.
    [35] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. Sheppard, and Z. Yang, “Quality of Experience in Distributed Interactive Multimedia Environments: Toward a Theoretical Framework,” in Proc. of ACM 17th International Conference on Multimedia, pp. 481-490, 2009.
    [36] M. Medagama, D. Dias, S. Fernado, “Transcoding based optimum quality video streaming under limited bandwidth,” in Proc. of 2009 International Conference on ICIIS, pp. 62-67, Dec. 2009.
    [37] K. J. Ma, R. Bartoˇs, S. Bhatia, and R. Nair, “Mobile video delivery with HTTP,” IEEE Communications Magazine, vol. 49, no. 4, pp. 166–175, Apr. 2011.
    [38] V. Swaminathan, and S. Wei, “Low latency live video streaming using HTTP chunked encoding,” in Proc. of IEEE 13th International Workshop on Multimedia Signal Processing, pp. 1-6, Oct. 2011.
    [39] A. Goel, C. Krasic, and J. Walpole, “Low-latency adaptive streaming over TCP,” ACM Trans. Multimedia Computing Commun. and Applications, vol. 4, no. 3, Aug. 2008.
    [40] P. Frossard, J. C. de Martin, and M Reha Civanlar, “Media Streaming With Network Diversity,” Proceedings of the IEEE, vol. 96, no. 1, Jan. 2008.
    [41] H. S. Lee, H. Y. Youn, and H. D. Jung, “Packet control mechanism for seamless multimedia streaming service in wireless network,” in Proc. of ICACT 2006 Advanced Communication Technology, vol. 3, pp. 1833-1838, Feb. 2006.
    [42] J. Guo, and L. N. Bhuyan, “Load Balancing in a Cluster-Based Web Server for Multimedia Applications,” IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 11, pp. 1321-1334, Nov. 2006.
    [43] A. Mahmood, T. Jinnah, Y. Asfia, and G. A. Shah, “A hybrid adaptive compression scheme for Multimedia Streaming over wireless networks,” in Proc. of ICET 2008. 4th International Emerging Technologies, pp. 187-192, Oct. 2008.
    [44] S.Y. Wu, and C.E. He, “QoS-Aware Dynamic Adaptation for Cooperative Media Streaming in Mobile Environments,” IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 3, pp. 439-450, Mar. 2011.
    [45] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. Sheppard, and Z. Yang, “Quality of Experience in Distributed Interactive Multimedia Environments: Toward a Theoretical Framework,” in Proc. of ACM 17th International Conference on Multimedia, pp. 481-490, 2009.
    [46] M. Medagama, D. Dias, S. Fernado, “Transcoding based optimum quality video streaming under limited bandwidth,” in Proc. of 2009 International Conference on ICIIS, pp. 62-67, Dec. 2009.
    [47] Y. Shi, K. Casey, M. A. Ertl, D. Gregg, “Virtual machine showdown: Stack versus registers,” ACM Transactions on Architecture and Code Optimization, vol. 4, no. 4, article 2, Jan. 2008.
    [48] Y.-X. Lai, C.-F. Lai, C.-C. Hu, H.-C. Chao and Y.-M. Huang, “A Personalized Mobile IPTV System with Seamless Video Reconstruction Algorithm in Cloud Networks ,“ International Journal of Communication Systems, Volume 24, Issue 10, pp. 1375 - 1387, October 2011.
    [49] L. Zhou, M. Chen, Z. Yu, J. Rodrigues, and H.-C. Chao, Cross-Layer Wireless Video Adaptation: Tradeoff between Distortion and Delay, Computer Communications, Vol. 33, Issue 14, pp. 1615- 1622, September 2010.
    [50] W.-M. Chen, C.-J. Lai, H.-C. Wang, H.-C. Chao and C.-H. Lo, H.264 Video Watermarking with Secret Image Sharing, IET Image Processing, Vol. 5, Issue 4, pp. 349 - 354, July 2011.
    [51] P.-C. Tsou, Y.-H. Lin, H.-H. Cho, J.-M. Chang and H.-C. Chao , Implement of an Efficient System to Reduce Power Consumption, In Proc. of 13th International Conference on Advanced Communication Technology ICACT 201,. Phoenix Park, Korea 13-16 February 2011
    [52] L. Wonbok, K. Patel and M. Pedram, ”GOP-Level Dynamic Thermal Management in MPEG-2 Decoding,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.16, pp.662-672
    [53] Y. Inchoon, K.L. Heung, J.K. Eun and H.Y. Ki, ”Effective Dynamic Thermal Management for MPEG-4 decoding,” International Conference on Computer Design, pp.623-628, Oct. 2007.
    [54] J. Pouwelse, K. Langendoen, and H. Sips, Dynamic Voltage Scaling on a Low-Power Microprocessor, Proceedings of the 7th annual international conference on Mobile computing and networking, pp.251-259, July (2001)
    [55] A. C. Bavier, A. B. Montz, and L. L. Peterson, Predicting MPEG execution times, in Proc. ACM SIGMETRICS Joint Int. Conf. Meas. Modeling Comput. Syst., 1998, pp. 131-140.
    [56] D. Son, C. Yu, and H. Kim, Dynamic voltage scaling on MPEG decoding, in Proc. ICPADS, 2001, pp. 633- 640.
    [57] K. Choi, K. Dantu,W.-C. Cheng, and M. Pedram, Frame-based dynamic voltage and frequency scaling for a MPEG decoder, in Proc. IEEE/ACM ICCAD, 2002, pp. 732 - 737.
    [58] C.-F. Lai and A.V. Vasilakos, “Mobile Multimedia Services over Cloud Computing,” IEEE COMSOC MMTC E-Letter, vol. 5, no. 6, Nov. 2010, pp. 39–41.
    [59] K. J. Ma, R. Bartos, S. Bhatia, and R. Nair, “Mobile Video Delivery with HTTP,” IEEE Commun. Mag., vol. 49, no. 4, Apr. 2011, pp. 166–175.
    [60] V. Swaminathan and S. Wei, “Low Latency Live Video Streaming using HTTP Chunked Encoding,” in Proc. of IEEE 13th International Workshop on Multimedia Signal Processing, pp. 1–6, Oct, 2011.
    [61] A. Goel, C. Krasic, and J. Walpole, “Low-latency Adaptive Streaming over TCP,” ACM Trans. Multimedia Computing, Commun. and Applications, vol. 4, no. 3, pp. 1–20, Aug. 2008.
    [62] P. Frossard, J. C. De Martin, and M. R. Civanlar, “Media Streaming With Network Diversity,” Proceedings of the IEEE, vol. 96, no. 1, pp. 39–53, Jan. 2008.
    [63] H. S. Lee, H. Y. Youn, and H. D. Jung, “Packet Control Mechanism for Seamless Multimedia Streaming Service in Wireless Network,” in Proc. of ICACT 2006 Advanced Communication Technology, vol. 3, pp. 1833–1838, Feb. 2006.
    [64] J. Guo and L. N. Bhuyan, “Load Balancing in a Cluster-Based Web Server for Multimedia Applications,” IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 11, pp. 1321–1334, Nov. 2006.
    [65] A. Mahmood, T. Jinnah, Y. Asfia, and G. A. Shah, “A Hybrid Adaptive Compression Scheme for Multimedia Streaming over Wireless Networks,” in Proc. of ICET 4th International Emerging Technologies, pp. 187–192, Oct. 2008.
    [66] S. Y. Wu and C. E. He, “QoS-Aware Dynamic Adaptation for Cooperative Media Streaming in Mobile Environments,” IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 3, pp. 439–450, Mar. 2011.
    [67] A. Begen, T. Akgul, and M. Baugher, “Watching Video over the Web: Part 1: Streaming Protocols,” IEEE Internet Computing, vol. 15, no. 2, pp. 54–63, Mar./Apr. 2011.
    [68] S.-Y. Chang, C.-F. Lai, and Y.-M. Huang, “Dynamic Adjustable Multimedia Streaming Service Architecture over Cloud Computing,” Computer Communications, vol. 35, no. 15, pp. 1798–1808, 2012.
    [69] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. Sheppard, and Z. Yang, “Quality of Experience in Distributed Interactive Multimedia Environments: Toward a Theoretical Framework,” in Proc. of ACM 17th International Conf. on Multimedia, pp. 481–490, 2009.
    [70] M. Medagama, D. Dias, and S. Fernado, “Transcoding based Optimum Quality Video Streaming under Limited Bandwidth,” in Proc. of 2009 International Conf.on ICIIS, pp. 62–67, Dec. 2009.
    [71] Q. Tang, H. Mansour, P. Nasiopoulos, and R. Ward, “Bit-rate Estimation for Bit-rate Reduction H.264/AVC Video Transcoding in Wireless Networks,” in Proc. of ISWPC 2008 3rd International Symposium on Wireless Pervasive Computing, pp. 464–467, May 2008.
    [72] T. Mizuno, J.-i. Okamura, and A. Toriumi, “Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET’s, “ IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 11, pp. 2216-2221, NOV. 1994.
    [73] Steven G. Kanzler and Michael L. Oelze, “Improved scatterer size estimation using backscatter coefficient measurements with coded excitation and pulse compression,” J Acoust Soc Am. 123(6):4599-607. Jun. 2008.
    [74] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch, E. J. Nowak, D. M. Sylvester “Ultralow-voltage minimum-energy CMOS,” IBM J. RES. & DEV. VOL. 50, NO. 4/5 JULY/SEPTEMBER 2006.
    [75] S. Grgic, M. Grgic, and M. Mrak, "RELIABILITY OF OBJECTIVE PICTURE QUALITY MEASURES," Journal of ELECTRICAL ENGINEERING, vol. 55, pp. 3-10, 2004.

    無法下載圖示 校內:2018-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE