簡易檢索 / 詳目顯示

研究生: 蔡文淵
Tsai, Wen-Yuan
論文名稱: 三環燃燒器中甲烷/一氧化二氮擴散火焰的熵產生率
Entropy generation rate of methane-nitrous oxide diffusion flames in triple-port burner
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 161
中文關鍵詞: 三環燃燒器雙火焰結構富氧燃燒熵生成率一氧化二氮
外文關鍵詞: Triple-port burner, Dual-flame structure, Oxygen-enriched combustion, Entropy generation rate, Nitrous oxide
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用三環燃燒器,並通過數值模擬研究CH4-N2O擴散火焰的熵生成率隨 R 值的變化。為了研究N2O分解所產生的熱效應對熵生成率的影響,在CH4-N2-O2擴散火焰中使用了與N2O相同的氮氧比(N/O = 2)的富氧氣體以利比較。此外,由於N2O分解後會生成富氧氣體,因此本研究亦利用 CH4-air擴散火焰研究了富氧效應對於熵生成率的影響。結果表明,在R值為1的條件下,富氧效應並不會影響火焰的性質和熵產生率。但是,當R值足夠大(R=5)時,CH4-N2-O2擴散火焰會呈現雙火焰結構以及更高的熵產生率。由於雙火焰結構,儘管在CH4-air和CH4-N2-O2擴散火焰中擁有類似的主要反應途徑,但是大部分的主要反應皆會得到增強。因此,由於反應區更強且分佈更廣,化學反應項將主導CH4-N2-O2擴散火焰中熵產生率的增強。在CH4-N2O擴散火焰中,當N2O在靠近中心管口附近發生分解時,會產生放熱反應。此外,由於與N2O相關的數個反應會參與反應過程,因此在CH4-N2O擴散火焰中會呈現出不同於前兩者的主要反應途徑。因此,CH4-N2O 擴散火焰中的反應會更加劇烈,且由於反應強度的增強,化學反應項將會導致更高的熵產生率發生於CH4-N2O擴散火焰中。當 R 值增加(R = 3)時,雙火焰結構亦會呈現在CH4-N2O擴散火焰中,且是在 R 值低於CH4-N2-O2擴散火焰(R = 5)的條件下,這代表N2O分解的熱效應有助於提升反應的的速率。由於CH4-N2O擴散火焰中的反應更劇烈且火焰溫度更高,熵產生率會因此而更進一步增加,並且也由化學反應項主導此差距。CH4-air擴散火焰於此研究中皆呈現單一火焰結構,其不可逆性主要由熱傳導和化學反應主導。在R值小於5的條件下,CH4-N2-O2擴散火焰亦是如此。但當R值=5條件下,CH4-N2-O2擴散火焰將會形成雙火焰結構,由於反應增強而使化學反應項主導不可逆性的生成。在CH4−N2O擴散火焰中,由於N2O分解的熱效應引起的反應更加強烈,因此在所有R值條件下,化學反應始終主導著不可逆性的產生。此外,在R值 = 3 的條件下,化學反應的不可逆性幾乎是CH4-N2-O2擴散火焰(R = 5)的兩倍,儘管在 CH4-N2-O2 擴散火焰中亦呈現出雙重火焰結構。有了這些結果,化學反應項將是提高 CH4-N2O 擴散火焰效率的關鍵點之一。

    A triple-port burner was used in this study, and a numerical simulation was employed to investigate the entropy generation rate of CH4−N2O diffusion flames with the change of the R ratio. To scrutinize the decomposition effect of N2O on entropy generation, an oxygen-enriched gas with the same nitrogen to oxygen ratio as N2O (N/O = 2) was used in CH4−N2−O2 diffusion flames. Besides, the N2O could decompose into the oxygen-enriched gas; the oxygen-enriched effect was also studied by the CH4−air diffusion flames that were conducted in this research. The results showed that the oxygen-enriched effect would not affect the properties and entropy generation rate in a condition of the R ratio = 1. However, when the R ratio increased enough (R = 5), the CH4−N2−O2 diffusion flames would present the dual flame structure and the higher entropy generation. Because of the dual flame structure, most of the reactions would be enhanced, although a similar major reaction pathway was presented in the CH4−air and CH4−N2−O2 diffusion flames. Then the entropy generation rate in the chemical reaction term would dominate the enhancement of the entropy generation in CH4−N2−O2 diffusion flames due to the more intense and broader reaction area. In the CH4−N2O diffusion flames, the among of heat release would be produced when the N2O decomposed near the vicinity of the center nozzle rim. Besides, the different major reaction pathways would be performed in CH4−N2O diffusion flames due to the several reactions relative to the N2O that would take part in the combustion process. Then, the reactions would be more intense in CH4−N2O diffusion flames, and the higher entropy generation would be produced by increasing the chemical reaction term because of the high reaction intensity. When the R ratio was increased (R = 3), the dual flame structure was also presented in CH4−N2O diffusion flames at a lower R ratio than CH4−N2−O2 diffusion flames that contributed to the thermal effect from the N2O decomposition. The entropy generation would be further higher due to the more intense reactions and higher temperature in CH4−N2O diffusion flames, and the chemical reaction term also dominated it. The irreversibility of CH4−air diffusion flames, which presented the single flame structure, would be dominated by heat conduction and chemical reaction. It was the same with CH4−N2−O2 diffusion flames in the condition of the R ratio < 5. When the dual flame structure formed in CH4−N2−O2 diffusion flames in the condition of the R ratio = 5, the chemical reaction would dominate the irreversibility due to the enhancement of the reactions. In CH4−N2O diffusion flames, the chemical reaction always dominated the irreversibility in all R ratio conditions because of the more intense reaction caused by the thermal effect of N2O decomposition. Furthermore, the irreversibility in chemical reaction would be almost two times greater than CH4−N2−O2 diffusion flames in the condition of the R ratio = 5, although the dual flame structure was presented in CH4−N2−O2 diffusion flames. With these results, the chemical reaction would be one of the critical points that could improve the efficiency of CH4−N2O diffusion flames.

    摘要 I Abstract III Table of Contents V List of Figure VII List of Table XI Nomenclature XII 1 Introduction 1 1.1 Background 1 1.2 Nitrous Oxide (N2O) 3 1.3 Hydrocarbon/N2O Combustion 4 1.4 Diffusion Flames 7 1.5 Triple-Port Burner 9 1.6 Entropy Generation Analysis 14 1.7 Motivations 17 1.8 Objectives 18 2 Experimental Apparatus and Numerical Simulation Method 20 2.1 Flame Image Capture 20 2.2 Flame Temperature Measurement 22 2.3 Numerical Simulation Method 24 2.4 Exergy Analysis 32 3 Results and Discussion 37 3.1 Validation 37 3.2 Numerical Results 42 3.3 Analysis of Entropy Generation Rate and Exergy 74 3.3.1 Volumetric Entropy Generation Rate 74 3.3.2 Exergy 91 4 Conclusions 97 Reference 100 Appendix 106 A. USM mechanism 106

    [1] M. Russi, A Survey of Monopropellant Hydrazine Thruster Technology, 9th Propulsion Conference, (1973) p. 1263.
    [2] R. L. Sackheim , R. K. Masse, Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine, J. Propul. Power., 30 (2014) 265-276.
    [3] U. Gotzig , S. Krauss, D. Welberg, D. Fiot, P. Michaud, C. Desaguier, S. Casu, B. Geiger, R. Kiemel, Development and Test of a 3D Printed Hydrogen Peroxide Flight Control Thruster, 51st AIAA/SAE/ASEE Joint Propulsion Conference, (2015) p. 4161.
    [4] S. P. Berg , J. L. Rovey, Assessment of Imidazole-Based Ionic Liquids as Dual-Mode Spacecraft Propellants, J. Propul. Power., 29 (2013) 339-351.
    [5] O. Božić , D. Porrmann, D. Lancelle, S. May, Enhanced Development of a Catalyst Chamber for the Decomposition of up to 1.0 kg/s Hydrogen Peroxide, CEAS Space Journal, 8 (2016) 77-88.
    [6] O. A. Powell , J. E. Miller, C. Dreyer, P. Papas, Characterization of Hydrocarbon/Nitrous Oxide Propellant Combinations, 46th AIAA Aerospace Sciences Meeting and Exhibit: American Institute of Aeronautics and Astronautics, (2008).
    [7] M. Yang , Y. Yang, C. Liao, C. Tang, C. Zhou, Z. Huang, The Auto-Ignition Boundary of Ethylene/Nitrous Oxide as a Promising Monopropellant, Combust. Flame, 221 (2020) 64-73.
    [8] A. Karabeyoglu , J. Dyer, J. Stevens, B. Cantwell, Modeling of N2O Decomposition Events, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: American Institute of Aeronautics and Astronautics, (2008).
    [9] G. Cai , W. Sun, J. Fang, M. Li, Y. Cong, Z. Yang, Design and Performance Characterization of a Sub-Newton N2O Monopropellant Thruster, Aerosp. Sci. Technol, 23 (2012) 439-451.
    [10] F. Shan , L. Hou, Y. Piao, Combustion Performance and Scale Effect from N2O/HTPB Hybrid Rocket Motor Simulations, Acta Astronaut., 85 (2013) 1-11.
    [11] C. Carmicino , F. Scaramuzzino, A. R. Sorge, Trade-Off between Paraffin-Based and Aluminium-Loaded HTPB Fuels to Improve Performance of Hybrid Rocket Fed with N2O, Aerosp. Sci. Technol, 37 (2014) 81-92.
    [12] J. Vandooren , M. C. Branch, P. J. van Tiggelen, Comparisons of the Structure of Stoichiometric CH4-N2O−Ar and CH4−O2−Ar Flames by Molecular Beam Sampling and Mass Spectrometric Analysis, Combust. Flame, 90 (1992) 247-258.
    [13] O. A. Powell , P. Papas, C. Dreyer, Laminar Burning Velocities for Hydrogen-, Methane-, Acetylene-, and Propane-Nitrous Oxide Flames, Combust. Sci. and Tech., 181 (2009) 917-936.
    [14] D. Razus , M. Mita, V. Giurcan, C. Movileanu, D. Oancea, Methane-Unconventional Oxidant Flames. Laminar Burning Velocities of Nitrogen-Diluted Methane–N2O Mixtures, Process Saf. Environ, 114 (2018) 240-250.
    [15] T. Newman-Lehman , R. Grana, K. Seshadri, F. Williams, The Structure and Extinction of Nonpremixed Methane/Nitrous Oxide and Ethane/Nitrous Oxide Flames, Proc. Combust. Inst., 34 (2013) 2147-2153.
    [16] U. J. Pfahl , M. C. Ross, J. E. Shepherd, C. Unal, K. O. Pasamehmetoglu, Flammability Limits, Ignition Energy, and Flame Speeds in H2−CH4−NH3−N2O−O2−N2 Mixtures, Combust. Flame, 123 (2000) 140-158.
    [17] A. Y. Shebeko , N. Y. Shebeko, A. V. Zuban, V. Y. Navzenya, An Experimental Investigation of an Inertization Effectiveness of Fluorinated Hydrocarbons in Relation to Premixed H2-N2O and CH4-N2O Flames, J. Loss Prevent. Proc., 26 (2013) 1639-1645.
    [18] W. Wang , H. Zhang, Laminar Burning Velocities of C2H4 /N2O Flames: Experimental Study and Its Chemical Kinetics Mechanism, Combust. Flame, 202 (2019) 362-375.
    [19] C. Chen , Y. Li, Role of N2O and Equivalence Ratio on NOx Formation of Methane/Nitrous Oxide Premixed Flames, Combust. Flame, 223 (2021) 42-54.
    [20] S. P. Burke , T. E. W. Schumann, Diffusion Flames, Ind. Eng. Chem., 20 (1928) 998-1004.
    [21] F. G. Roper Laminar Diffusion Flame Sizes for Curved Slot Burners Giving Fan-Shaped Flames, Combust. Flame, 31 (1978) 251-258.
    [22] F. G. Roper The Prediction of Laminar Jet Diffusion Flame Sizes: Part I. Theoretical Model, Combust. Flame, 29 (1977) 219-226.
    [23] F. G. Roper The Prediction of Laminar Jet Diffusion Flame Sizes: Part II. Experimental Verification, Combust. Flame, 29 (1977) 227-234.
    [24] S. H. Chung , C. K. Law, Burke–Schumann Flame with Streamwise and Preferential Diffusion, Combust. Sci. Technol., 37 (1984) 21-46.
    [25] M. A. Mikofski , T. C. Williams, C. R. Shaddix, L. G. Blevins, Flame Height Measurement of Laminar Inverse Diffusion Flames, Combust. Flame, 146 (2006) 63-72.
    [26] P. B. Sunderland , S. S. Krishnan, J. P. Gore, Effects of Oxygen Enhancement and Gravity on Normal and Inverse Laminar Jet Diffusion Flames, Combust. Flame, 136 (2004) 254-256.
    [27] P. B. Sunderland , B. J. Mendelson, Z. G. Yuan, D. L. Urban, Shapes of Buoyant and Nonbuoyant Laminar Jet Diffusion Flames, Combust. Flame, 116 (1999) 376-386.
    [28] L. K. Sze , C. S. Cheung, C. W. Leung, Appearance, Temperature, and NOx Emission of Two Inverse Diffusion Flames with Different Port Design, Combust. Flame, 144 (2006) 237-248.
    [29] B. A. Rabee The Effect of Inverse Diffusion Flame Burner-Diameter on Flame Characteristics and Emissions, Energy, 160 (2018) 1201-1207.
    [30] M. B. Johnson , A. Sobiesiak, Hysteresis of Methane Inverse Diffusion Flames with Co-Flowing Air and Combustion Products, Proc. Combust. Inst., 33 (2011) 1079-1085.
    [31] B. H. Chao , R. L. Axelbaum, Triaxial Burke-Schumann Flames with Applications to Flame Synthesis, Combust. Sci. Tech., 156 (2000) 291-314.
    [32] Y. Ko , S. Hou, T. Lin, Laminar Diffusion Flames in a Multiport Burner, Combust. Sci. Tech., 177 (2005) 1463-1484.
    [33] F. Liu , G. J. Smallwood, Control of the Structure and Sooting Characteristics of a Coflow Laminar Methane/Air Diffusion Flame Using a Central Air Jet: An Experimental and Numerical Study, Proc. Combust. Inst., 33 (2011) 1063-1070.
    [34] F. Liu , H. Guo, G. J. Smallwood, Effects of Radiation Model on the Modeling of a Laminar Coflow Methane/Air Diffusion Flame, Combust. Flame, 138 (2004) 136-154.
    [35] K. Yamamoto , Y. Isobe, N. Hayashi, H. Yamashita, S. H. Chung, Behaviors of Tribrachial Edge Flames and Their Interactions in a Triple-Port Burner, Combust. Flame, 162 (2015) 1653-1659.
    [36] K. Yamamoto , S. Kato, Y. Isobe, N. Hayashi, H. Yamashita, Lifted Flame Structure of Coannular Jet Flames in a Triple Port Burner, Proc. Combust. Inst., 33 (2011) 1195-1201.
    [37] J. O. Hirschfelder , C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1964.
    [38] V. S. Arpaci , A. Selamet, Entropy Production in Flames, Combust. Flame, 73 (1998) 251-259.
    [39] P. S. Salimath , I. S. Ertesvåg, Local Entropy Generation and Entropy Fluxes of a Transient Flame During Head-on Quenching Towards Solid and Hydrogen-Permeable Porous Walls, Int. J. Hydrogen Energy, 46 (2021) 26616-26630.
    [40] A. Emadi , M. D. Emami, Analysis of Entropy Generation in a Hydrogen-Enriched Turbulent Non-Premixed Flame, Int. J. Hydrogen Energy, 38 (2013) 5961-5973.
    [41] A. M. Briones , A. Mukhopadhyay, S. K. Aggarwal, Analysis of Entropy Generation in Hydrogen-Enriched Methane–Air Propagating Triple Flames, Int. J. Hydrogen Energy, 34 (2009) 1074-1083.
    [42] Y. Wu , Q. Peng, M. Yang, J. Shan, W. Yang, Entropy Generation Analysis of Premixed Hydrogen–Air Combustion in a Micro Combustor with Porous Medium, Chem. Eng. Process. Process Intensif., 168 (2021) 108566.
    [43] I. Mohammadi , H. Ajam, A Theoretical Study of Entropy Generation of the Combustion Phenomenon in the Porous Medium Burner, Energy, 188 (2019) 116004.
    [44] A. Datta, Effects of Gravity on Structure and Entropy Generation of Confined Laminar Diffusion Flames, Int. J. Therm. Sci., 44 (2005) 429-440.
    [45] W. Yang , D. Jiang, K. Chua, D. Zhao, J. Pan, Combustion Process and Entropy Generation in a Novel Microcombustor with a Block Insert, Chem. Eng. J., 274 (2015) 231-237.
    [46] D. Bradley , K. J. Matthews Measurement of High Gas Temperature with Fine Wire Thermocouple, J. Mech. Eng. Sci., 10 (1968) 299-305.
    [47] W. E. Kaskan The Dependence of Flame Temperature on Mass Burning Velocity, Symp. Combust., 6 (1956) 134-143.
    [48] B. E. Poling , J. M. Prausnitz, J. P. O'Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001.
    [49] J. M. Franssen , P. V. Real, Fire Design of Steel Structures, ECCS and Ernst & Sohn, 2012.
    [50] G. P. Smith , D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, Grimech 3.0 Reaction Mechanism, Berkeley, (2012), http://www.me.berkeley.edu/gri_mech/.
    [51] H. Wang , A. Laskin, A Comprehensive Kinetic Model of Ethylene and Acetylene Oxidation at High Temperatures, Progress Report for an AFOSR New World Vista Program, (1998), http://ignis.usc.edu/Mechanisms/C2-C4/c2.html.
    [52] Combustion Research Group, The San Diego Mechanism: Chemical Kinetic Mechanisms for Combustion Applications, Mechanical and Aerospace Engineer- Ing (Combustion Research), University of California at San Diego, San Diego, CA, (2014), http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [53] Y. Li , J. Liang, H. Lin, Development of Laminar Burning Velocity Measurement System in Premixed Flames with Hydrogen-Content Syngas or Strong Oxidizer Conditions in a Slot Burner, Case Stud. Therm. Eng., 35 (2022) 102162.
    [54] A. Bejan Advanced Engineering Thermodynamics, 1988.
    [55] M. J. Moran , H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 5th ed., John Wiley & Sons, 2004.
    [56] J. Szargut Egzergia. Poradnik Obliczania I Stosowania, Wydawnictwa Politechniki Śląskiej, Gliwice, 2007.
    [57] V. Hariharan , D. P. Mishra, Entrainment Studies in Inverse Jet Flame Port Burner, Combust. Flame, 216 (2020) 338-353.
    [58] Y. Li , S. K. Reddy, C. Chen, Effects of the Nitrous Oxide Decomposition Reaction on Soot Precursors in Nitrous Oxide/Ethylene Diffusion Flames, Energy, 235 (2021) 121364.
    [59] Y. Li , C. Chen, M. Ilbas, Effect of Diluent Addition on Combustion Characteristics of Methane/Nitrous Oxide Inverse Tri-Coflow Diffusion Flames., Combust. Sci. Tech., (2021).
    [60] S. M. Al-Noman , S. K. Choi, S. H. Chung, Numerical Study of Laminar Nonpremixed Methane Flames in Coflow Jets: Autoignited Lifted Flames with Tribrachial Edges and Mild Combustion at Elevated Temperatures, Combust. Flame, 171 (2016) 119-132.
    [61] M. Frenklach , D. E. Bornside, Shock-Initiated Ignition in Methane-Propane Mixtures, Combust. Flame, 56 (1984) 1-27.
    [62] M. Altarawneh , B. Z. Dlugogorski, E. M. Kennedy, J. C. Mackie, Theoretical Study of Reactions of Ho2 in Low-Temperature Oxidation of Benzene, Combust. Flame, 157 (2010) 1325-1330.
    [63] Z. Wang , O. Herbinet, N. Hansen, F. Battin-Leclerc, Exploring Hydroperoxides in Combustion: History, Recent Advances and Perspectives, Prog. Energy Combust. Sci., 73 (2019) 132-181.
    [64] A. M. Briones , S. K. Aggarwal, V. R. Katta, Effects of H2 Enrichment on the Propagation Charateristics of CH4-Air Triple Flames, Combust. Flame, 153 (2008) 367-383.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE