| 研究生: |
黃文嶸 Huang, Wen-Rong |
|---|---|
| 論文名稱: |
表面處理對牙科複合樹脂與鈦金屬間鍵結行為研究 Effect of Surface Treatment on Bonding behavior between Dental Composite Resin and Titanium |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 牙科複合樹脂 、純鈦 、Ti-7.5Mo 、剪切鍵結強度 、ISO 10477 、SR Nexco |
| 外文關鍵詞: | dental composite resin, pure titanium, Ti-7.5Mo, shear bond strength test, ISO 10477, SR Nexco |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主題關注於牙科複合樹脂SR Nexco和商業純鈦(Grade 2)、Ti-7.5Mo合金之間的鍵結行為。本次實驗的試片製備和剪切鍵結強度試驗方法依ISO 10477規範要求進行。本實驗先將純鈦和Ti-7.5Mo用砂紙研磨到1000號,再進行表面處理,並搭配不同的Opaquer光聚合條件,希望藉此找到最佳鍵結強度的參數,有經過表面處理後的試片鍵結強度有所提升,Opaquer光聚合條件會對鍵結強度產生影響。最後進行ISO 10477所要求的冷熱循環水浴測試。進行冷熱循環水浴測試後所有參數的試片其鍵結強度皆降低,有經過表面處理的試片鍵結強度依然高於未處理的對照組。冷熱循環水浴測試後鍵結強度下降是因為牙科複合樹脂和純鈦、Ti-7.5Mo的熱膨脹係數存在著巨大的差異。
This thesis is about bonding behavior between dental composite resin (SR NexcoⓇ) and Titanium(commercially pure titanium-Grade 2&Ti-7.5Mo alloy). All specimens preparing process and shear bond test method followed by ISO 10477 specification. In this experiment, pure titanium and Ti-7.5Mo were mechanically polished with successive grades sandpapers down to 1000 grit, and then the surface treatment was carried out, and matched with different Opaquer curring conditions, hoping to find the best bonding strength parameters. The bonding strength of the specimens after surface treatment has been improved, and then Opaquer curring conditions will affect the bonding strength. Finally, specimens performed thermocycling test required by ISO 10477. The result of thermocycling test shows degradation in bonding strength, and the bonding strength of the specimens with the surface treatment was still higher than the untreated specimens.The degradation in bonding strength is due to the huge difference in the thermal expansion coefficient between dental composite resin and titanium.
1. Spencer, N., et al., Surface characterization of implant materials c. p. Ti, Ti-6 Al-7 Nb and Ti-6 Al-4 V with different pretreatments. Journal of Materials Science: Materials in Medicine(UK), 1999. 10(1): p. 35-46.
2. Rao, S., et al., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-medical materials and engineering, 1996. 6(2): p. 79-86.
3. Walker, P.R., J. LeBlanc, and M. Sikorska, Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 1989. 28(9): p. 3911-3915.
4. Ho, W., C.-P. Ju, and J.C. Lin, Structure and properties of cast binary Ti–Mo alloys. Biomaterials, 1999. 20(22): p. 2115-2122.
5. Barksdale, J., Titanium, its occurrence, chemistry, and technology. Soil Science, 1950. 70(5): p. 414.
6. ASTM Specifications, Vol.8 American Society for Testing and Materials.Philadclphiz. 1979.
7. Wildgoose, D.G., A. Johnson, and R.B. Winstanley, Glass/ceramic/refractory techniques, their development and introduction into dentistry: A historical literature review. The Journal of prosthetic dentistry, 2004. 91(2): p. 136-143.
8. Bowen, R.L., Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate. 1962, Google Patents.
9. RobertG, C. and J. Powers, Restorative dental materials. 口腔材料器械杂志, 2003. 12(4): p. 209-213.
10. γ-Methacryloxypropyl-Trimethoxysilane. Available from: https://www.mpbio.com/eu/0215537805-g-methacryloxypropyl-trimethoxysilane-cf.
11. Todd, J.-C., Scientific Documentation SR Nexco Paste, Ivoclar Vivadent AG. Research and Development Scientific Service, Bendererstrasse, 2012. 2.
12. Gajewski, V.E., et al., Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Brazilian dental journal, 2012. 23(5): p. 508-514.
13. Mahalaxmi, S., Materials used in dentistry. 2020: Wolters kluwer india Pvt Ltd.
14. Miara, P., Aesthetic guidelines for second-generation indirect inlay and onlay composite restorations. Practical periodontics and aesthetic dentistry: PPAD, 1998. 10(4): p. 423-31; quiz 432.
15. Taira, Y. and Y. Imai, Primer for bonding resin to metal. Dental Materials, 1995. 11(1): p. 2-6.
16. Bulbul, M. and B. Kesim, The effect of primers on shear bond strength of acrylic resins to different types of metals. The Journal of prosthetic dentistry, 2010. 103(5): p. 303-308.
17. Choo, S.-S., et al., Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin. The Journal of Advanced Prosthodontics, 2015. 7(5): p. 392-399.
18. Kojima, K., Adhesion to precious metals utilizing triazinedithione derivative monomer. JJ Dent Mater, 1987. 6: p. 702-707.
19. Yoshida, K., Effect of Sulfur-Containing Primers for Noble Metals on the Bond Strength of Self-Cured Acrylic Resin. Dentistry Journal, 2017. 5(2): p. 22.
20. KADOMA, Y., Chemical structures of adhesion promoting monomers for precious metals and their bond strengths to dental metals. Dental materials journal, 2003. 22(3): p. 343-358.
21. Taira, Y. and K. Kamada, Effects of primers containing sulfur and phosphate monomers on bonding type IV gold alloy. Journal of dentistry, 2008. 36(8): p. 595-599.
22. Taira, Y., M. Sakai, and T. Sawase, Effects of primer containing silane and thiophosphate monomers on bonding resin to a leucite-reinforced ceramic. Journal of dentistry, 2012. 40(5): p. 353-358.
23. Yoshida, Y., et al., Comparative study on adhesive performance of functional monomers. Journal of dental research, 2004. 83(6): p. 454-458.
24. Tsuchimoto, Y., et al., Effect of 4-MET-and 10-MDP-based primers on resin bonding to titanium. Dental materials journal, 2006. 25(1): p. 120-124.
25. MDP Monomer. Available from: https://kuraraydental.com/clearfil/key-technologies/mdp-monomer/.
26. Watanabe, I., et al., Effect of sandblasting and silicoating on bond strength of polymer-glass composite to cast titanium. The Journal of prosthetic dentistry, 1999. 82(4): p. 462-467.
27. Adachi, M., et al., Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. Journal of dental research, 1990. 69(6): p. 1230-1235.
28. Norwitz, G. and M. Codell, Determination of Molybdenum in Molybdenum-Titanium Alloys by Precipitation as Sulfide. Analytical Chemistry, 1953. 25(10): p. 1438-1441.
29. Ivanova, N., et al., Electrodeposition of metal molybdenum from electrolytes containing hydrofluoric acid. Protection of metals, 2006. 42(4): p. 354-358.
30. 許博閔, 在不同表面處理下鈦及其合金與牙科樹脂間鍵結強度的比較, in 口腔材料科學研究所. 2012, 中山醫學大學. p. 1-64.
31. Taira, Y., et al., Effects of a metal etchant and two primers on resin bonding durability to titanium. European journal of oral sciences, 2004. 112(1): p. 95-100.
32. Sakamoto, H., et al., Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through γ-mercapto propyl trimethoxysilane. Dental materials journal, 2008. 27(1): p. 81-92.
33. 黃冠維, 表面處理對於鈦金屬與牙科樹脂間鍵結強度的影響, in 口腔材料科學研究所. 2010, 中山醫學大學. p. 1-56.
34. Catelan, A., et al., Impact of light-curing time and aging on dentin bond strength of methacrylate-and silorane-based restorative systems. Brazilian Journal of Oral Sciences, 2014. 13(3): p. 213-218.
35. Hussain, M. and Y. Wang, Influence of prolonged light-curing time on the shear bonding strength of resin to bleached enamel. Operative dentistry, 2010. 35(6): p. 672-681.
36. Kawano, F., et al., Influence of thermal cycles in water on flexural strength of laboratory‐processed composite resin. Journal of oral rehabilitation, 2001. 28(8): p. 703-707.
37. Kim, J.-Y., P. Pfeiffer, and W. Niedermeier, Effect of laboratory procedures and thermocycling on the shear bond strength of resin-metal bonding systems. The Journal of prosthetic dentistry, 2003. 90(2): p. 184-189.