簡易檢索 / 詳目顯示

研究生: 黃文嶸
Huang, Wen-Rong
論文名稱: 表面處理對牙科複合樹脂與鈦金屬間鍵結行為研究
Effect of Surface Treatment on Bonding behavior between Dental Composite Resin and Titanium
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 牙科複合樹脂純鈦Ti-7.5Mo剪切鍵結強度ISO 10477SR Nexco
外文關鍵詞: dental composite resin, pure titanium, Ti-7.5Mo, shear bond strength test, ISO 10477, SR Nexco
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題關注於牙科複合樹脂SR Nexco和商業純鈦(Grade 2)、Ti-7.5Mo合金之間的鍵結行為。本次實驗的試片製備和剪切鍵結強度試驗方法依ISO 10477規範要求進行。本實驗先將純鈦和Ti-7.5Mo用砂紙研磨到1000號,再進行表面處理,並搭配不同的Opaquer光聚合條件,希望藉此找到最佳鍵結強度的參數,有經過表面處理後的試片鍵結強度有所提升,Opaquer光聚合條件會對鍵結強度產生影響。最後進行ISO 10477所要求的冷熱循環水浴測試。進行冷熱循環水浴測試後所有參數的試片其鍵結強度皆降低,有經過表面處理的試片鍵結強度依然高於未處理的對照組。冷熱循環水浴測試後鍵結強度下降是因為牙科複合樹脂和純鈦、Ti-7.5Mo的熱膨脹係數存在著巨大的差異。

    This thesis is about bonding behavior between dental composite resin (SR NexcoⓇ) and Titanium(commercially pure titanium-Grade 2&Ti-7.5Mo alloy). All specimens preparing process and shear bond test method followed by ISO 10477 specification. In this experiment, pure titanium and Ti-7.5Mo were mechanically polished with successive grades sandpapers down to 1000 grit, and then the surface treatment was carried out, and matched with different Opaquer curring conditions, hoping to find the best bonding strength parameters. The bonding strength of the specimens after surface treatment has been improved, and then Opaquer curring conditions will affect the bonding strength. Finally, specimens performed thermocycling test required by ISO 10477. The result of thermocycling test shows degradation in bonding strength, and the bonding strength of the specimens with the surface treatment was still higher than the untreated specimens.The degradation in bonding strength is due to the huge difference in the thermal expansion coefficient between dental composite resin and titanium.

    總目錄 第一章 緒論 11 1-1.前言 11 1-2.研究目的 12 第二章 文獻回顧 13 2-1.牙科材料分類 13 2-2. 金屬-鈦與鈦合金 13 2-3 陶瓷 16 2-4.牙科複合樹脂 17 2-5.牙科複合樹脂與金屬鍵結 24 2-6.複合樹脂接著劑 25 2-7.表面處理 33 第三章 實驗方法 34 3-1.實驗流程 34 3-2.實驗藥品 41 3-3實驗儀器 42 3-4試片製備 35 3-5.實驗結果評估 39 第四章 結果與討論 45 4-1. 表面處理後試片外觀 45 4-2 SEM表面形貌觀測 48 4-3. 表面處理後純鈦和SR Nexco複合樹脂的鍵結強度 53 4-4 純鈦和Ti-7.5Mo塗佈SR Nexco複合樹脂的鍵結強度比較 67 第五章 結論 71 第六章 參考文獻 72 表目錄 表2-2-1. 純鈦的物理性質 15 表2-2-2 ASTM純鈦分類 15 表2-5-1. 人工燒瓷牙冠和複合樹脂的比較 25 表3-2-1. SR Nexco各項藥劑之成分 41 表3-4-1. Lumamat 100的 四種程式控制之詳細內容 38 表4-3-1.不同條件下Shear bond strength測試結果 54 表4-3-2. A溶液電化學中不同處理時間下剪切鍵結強度測試結果 56 表4-3-3. B溶液電化學中不同處理時間下剪切鍵結強度測試結果 57 表4-3-4浸泡1M C溶液不同時間下剪切鍵結強度測試結果 59 表4-3-5浸泡3M C溶液不同時間下剪切鍵結強度測試結果 60 表4-3-6浸泡5M C溶液不同時間下剪切鍵結強度測試結果 61 表4-3-7.不同Opaquer光聚合條件下剪切鍵結強度測試結果 63 表4-3-8. 冷熱水浴循環前後剪切鍵結強度測試結果 65 表4-4-1. 純鈦和Ti-7.5Mo剪切鍵結強度測試結果 67 表4-4-2. 冷熱循環後純鈦和Ti-7.5Mo剪切鍵結強度測試結果 69 圖片目錄 圖2-4-1. γ-methacryloxypropyl trimethoxysilane矽烷偶合劑之分子結構式 18 圖2-4-2.Bis-GMA分子結構式 19 圖2-4-3. TEGDMA分子結構式 19 圖2-4-4. UDMA之分子結構式 20 圖2-6-1. VBATDT分子結構圖 27 圖2-6-2. VBATDT的互變異構體,分別為二硫酮(dithione)、硫酮-硫氫(thione-thiol)、二硫氫(dithiol) 28 圖2-6-3. MTU-6分子結構圖 29 圖2-6-4. MDDT分子結構圖 29 圖2-6-5. MEPS分子結構圖 29 圖2-6-6. 10-MDP單體分子結構圖 31 圖2-6-7. SR Link作用示意圖 32 圖3-1-1. 實驗流程圖 34 圖3-4-1. 電化學裝置示意圖 36 圖3-2-2. 浸泡化學溶液示意圖 37 圖3-3-1. ISO 10477規範中量測shear bond strength之夾具示意圖 40 圖3-3-2. 三種破裂模式之示意圖 40 圖3-5-1 研磨拋光機 42 圖3-5-2 離心鑄造機(Selec TICAST SUPER®R) 42 圖3-5-3 線性直流電源供應器 42 圖 3-5-5 bre.Lux PowerUnit光聚合機 43 圖 3-5-6 Lumamat 100 光聚合機 43 圖3-5-7. RCB-412冷熱循環處理水浴槽 44 圖 3-5-8 熱燈絲式SEM(JEOL JSM-6510) 44 圖 3-5-9場發射SEM(HITACHI SU8000) 44 圖4-1-1. 純鈦和Ti-7.5Mo經過噴砂處理後的外觀 45 圖4-1-2. 純鈦試片經過A溶液電化學處理後的外觀 45 圖4-1-3. Ti-7.5Mo試片經過A溶液電化學處理後的外觀 46 圖4-1-5. Ti-7.5Mo試片經過B溶液電化學處理後的外觀 47 圖4-1-6. 純鈦和Ti-7.5Mo浸泡X M C溶液後的外觀 47 圖4-2-1. 純鈦經過A溶液電化學處理TA3 min和TA2 min (5000倍和10000倍) 48 圖4-2-2. 純鈦經過A溶液電化學處理TA3 min和TA2 min(80000倍) 48 圖4-2-3. 純鈦經過B溶液電化學處理TB3 min和TB2 min (5000倍和10000倍) 49 圖4-2-4. 純鈦經過B溶液電化學處理TB3 min和TB2 min (80000倍) 50 圖4-2-5. 純鈦浸泡X M C溶液TC2 min和TC3 min(5000倍和10000倍) 50 圖4-2-6. 純鈦浸泡X M C溶液TC2 min和TC3min(80000倍) 51 圖4-2-7. Ti-7.5Mo經過B溶液電化學處理TB3分鐘(5000倍和10000倍) 51 圖4-2-8. Ti-7.5Mo浸泡X M C溶液TC2 min (5000倍和10000倍) 52 圖4-2-9. 純鈦經過噴砂處理後(5000倍和10000倍) 52 圖4-2-10. Ti-7.5Mo經過噴砂處理後(5000倍和10000倍) 53 圖4-3-1.不同表面處理下剪切鍵結強度測試結果 54 圖4-3-2. A溶液電化學中不同處理時間下剪切鍵結強度測試結果 56 圖4-3-3. B溶液電化學中不同處理時間下剪切鍵結強度測試結果 57 圖4-3-4浸泡X M C溶液不同時間下剪切鍵結強度測試結果 59 圖4-3-5浸泡Y M C溶液不同時間下剪切鍵結強度測試結果 60 圖4-3-6浸泡Z M C溶液不同時間下剪切鍵結強度測試結果 61 圖4-3-7.不同Opaquer光聚合條件下剪切鍵結強度測試結果 63 圖4-3-8.冷熱水浴循環前後剪切鍵結強度測試結果 65 圖4-4-1. 純鈦和Ti-7.5Mo剪切鍵結強度測試結果 67 圖4-4-2. 冷熱循環後純鈦和Ti-7.5Mo剪切鍵結強度測試結果 69

    1. Spencer, N., et al., Surface characterization of implant materials c. p. Ti, Ti-6 Al-7 Nb and Ti-6 Al-4 V with different pretreatments. Journal of Materials Science: Materials in Medicine(UK), 1999. 10(1): p. 35-46.
    2. Rao, S., et al., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-medical materials and engineering, 1996. 6(2): p. 79-86.
    3. Walker, P.R., J. LeBlanc, and M. Sikorska, Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 1989. 28(9): p. 3911-3915.
    4. Ho, W., C.-P. Ju, and J.C. Lin, Structure and properties of cast binary Ti–Mo alloys. Biomaterials, 1999. 20(22): p. 2115-2122.
    5. Barksdale, J., Titanium, its occurrence, chemistry, and technology. Soil Science, 1950. 70(5): p. 414.
    6. ASTM Specifications, Vol.8 American Society for Testing and Materials.Philadclphiz. 1979.
    7. Wildgoose, D.G., A. Johnson, and R.B. Winstanley, Glass/ceramic/refractory techniques, their development and introduction into dentistry: A historical literature review. The Journal of prosthetic dentistry, 2004. 91(2): p. 136-143.
    8. Bowen, R.L., Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate. 1962, Google Patents.
    9. RobertG, C. and J. Powers, Restorative dental materials. 口腔材料器械杂志, 2003. 12(4): p. 209-213.
    10. γ-Methacryloxypropyl-Trimethoxysilane. Available from: https://www.mpbio.com/eu/0215537805-g-methacryloxypropyl-trimethoxysilane-cf.
    11. Todd, J.-C., Scientific Documentation SR Nexco Paste, Ivoclar Vivadent AG. Research and Development Scientific Service, Bendererstrasse, 2012. 2.
    12. Gajewski, V.E., et al., Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Brazilian dental journal, 2012. 23(5): p. 508-514.
    13. Mahalaxmi, S., Materials used in dentistry. 2020: Wolters kluwer india Pvt Ltd.
    14. Miara, P., Aesthetic guidelines for second-generation indirect inlay and onlay composite restorations. Practical periodontics and aesthetic dentistry: PPAD, 1998. 10(4): p. 423-31; quiz 432.
    15. Taira, Y. and Y. Imai, Primer for bonding resin to metal. Dental Materials, 1995. 11(1): p. 2-6.
    16. Bulbul, M. and B. Kesim, The effect of primers on shear bond strength of acrylic resins to different types of metals. The Journal of prosthetic dentistry, 2010. 103(5): p. 303-308.
    17. Choo, S.-S., et al., Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin. The Journal of Advanced Prosthodontics, 2015. 7(5): p. 392-399.
    18. Kojima, K., Adhesion to precious metals utilizing triazinedithione derivative monomer. JJ Dent Mater, 1987. 6: p. 702-707.
    19. Yoshida, K., Effect of Sulfur-Containing Primers for Noble Metals on the Bond Strength of Self-Cured Acrylic Resin. Dentistry Journal, 2017. 5(2): p. 22.
    20. KADOMA, Y., Chemical structures of adhesion promoting monomers for precious metals and their bond strengths to dental metals. Dental materials journal, 2003. 22(3): p. 343-358.
    21. Taira, Y. and K. Kamada, Effects of primers containing sulfur and phosphate monomers on bonding type IV gold alloy. Journal of dentistry, 2008. 36(8): p. 595-599.
    22. Taira, Y., M. Sakai, and T. Sawase, Effects of primer containing silane and thiophosphate monomers on bonding resin to a leucite-reinforced ceramic. Journal of dentistry, 2012. 40(5): p. 353-358.
    23. Yoshida, Y., et al., Comparative study on adhesive performance of functional monomers. Journal of dental research, 2004. 83(6): p. 454-458.
    24. Tsuchimoto, Y., et al., Effect of 4-MET-and 10-MDP-based primers on resin bonding to titanium. Dental materials journal, 2006. 25(1): p. 120-124.
    25. MDP Monomer. Available from: https://kuraraydental.com/clearfil/key-technologies/mdp-monomer/.
    26. Watanabe, I., et al., Effect of sandblasting and silicoating on bond strength of polymer-glass composite to cast titanium. The Journal of prosthetic dentistry, 1999. 82(4): p. 462-467.
    27. Adachi, M., et al., Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. Journal of dental research, 1990. 69(6): p. 1230-1235.
    28. Norwitz, G. and M. Codell, Determination of Molybdenum in Molybdenum-Titanium Alloys by Precipitation as Sulfide. Analytical Chemistry, 1953. 25(10): p. 1438-1441.
    29. Ivanova, N., et al., Electrodeposition of metal molybdenum from electrolytes containing hydrofluoric acid. Protection of metals, 2006. 42(4): p. 354-358.
    30. 許博閔, 在不同表面處理下鈦及其合金與牙科樹脂間鍵結強度的比較, in 口腔材料科學研究所. 2012, 中山醫學大學. p. 1-64.
    31. Taira, Y., et al., Effects of a metal etchant and two primers on resin bonding durability to titanium. European journal of oral sciences, 2004. 112(1): p. 95-100.
    32. Sakamoto, H., et al., Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through γ-mercapto propyl trimethoxysilane. Dental materials journal, 2008. 27(1): p. 81-92.
    33. 黃冠維, 表面處理對於鈦金屬與牙科樹脂間鍵結強度的影響, in 口腔材料科學研究所. 2010, 中山醫學大學. p. 1-56.
    34. Catelan, A., et al., Impact of light-curing time and aging on dentin bond strength of methacrylate-and silorane-based restorative systems. Brazilian Journal of Oral Sciences, 2014. 13(3): p. 213-218.
    35. Hussain, M. and Y. Wang, Influence of prolonged light-curing time on the shear bonding strength of resin to bleached enamel. Operative dentistry, 2010. 35(6): p. 672-681.
    36. Kawano, F., et al., Influence of thermal cycles in water on flexural strength of laboratory‐processed composite resin. Journal of oral rehabilitation, 2001. 28(8): p. 703-707.
    37. Kim, J.-Y., P. Pfeiffer, and W. Niedermeier, Effect of laboratory procedures and thermocycling on the shear bond strength of resin-metal bonding systems. The Journal of prosthetic dentistry, 2003. 90(2): p. 184-189.

    下載圖示 校內:2025-08-26公開
    校外:2025-08-26公開
    QR CODE