簡易檢索 / 詳目顯示

研究生: 黃怡君
Huang, Yi-Jyun
論文名稱: 內含薄膜型超穎材料之結構樑波傳行為
Flexural Wave Propagation in a Metamaterial Beam with Membrane-Mass Structures
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 59
中文關鍵詞: 聲學超穎材料能隙色散關係薄膜質量共振器
外文關鍵詞: acoustic metamaterials, band gap, dispersion relation, membrane-mass resonator
相關次數: 點閱:98下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今很多期刊當中,都對於超穎材料有許多的介紹與應用,其中,又以材料吸收振動的效應最常被應用。在此篇論文中,我們利用超穎材料樑的特性,探討了框形主結構樑的波傳行為,其主結構包含了可以當作局部共振器之薄膜質量系統。而決定頻率能隙位置的關鍵,是在於薄膜質量結構的局部共振頻率,藉由調整薄膜張力、質量大小、及質量位置,就能夠輕鬆調整頻率能隙的位置。我們利用解析解與模擬解來分析超穎材料樑的波傳行為,而多重共振器的結構也被應用來拓寬頻率能隙的寬度。

    The studies on vibration reduction with metamaterials have been presented in many journals. In this thesis, we studied the wave propagation of a frame-like host beam with membrane-mass structures which can be used as local resonators. The band gap location of the metamaterial beam can be determined by the local resonant frequency of the membrane-type resonator. By altering the membrane tension, the mass magnitude, and the mass location, the local resonance frequency of the membrane-mass structure can be easily tuned. The finite element software (COMSOL Multiphysics) is used to simulate the propagation behavior of the metamaterial beam. Multiple kinds of resonators are also used for widening the band gap width.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgment Ⅲ List of Figures Ⅵ List of Tables Ⅹ Nomenclature ⅩⅠ CHAPTER 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Reviews 1 1.3 Chapter Outline 3 CHAPTER 2 Theory 5 2.1 Vibrations of a Pre-Tensioned Rectangular Plate 5 2.2 Vibrations of a Pre-Tensioned Rectangular Plate with a Concentrated Mass 8 CHAPTER 3 Finite Element Simulations 12 3.1 Introduction of COMSOL Multiphysics 12 3.2 Finite Element Modeling and Analysis 14 3.2.1 Dispersion Relation Modeling of a Metamaterial Beam with Periodic Local Resonances 14 3.2.2 Frequency Response Analysis of the Metamaterial Beam with Periodic Local Resonances 24 CHAPTER 4 Numerical and Analytical Results 28 4.1 Chahracteristics of Periodic Structures 28 4.2 Dispersion Relation of the Metamaterial Beam with Bare Membranes 30 4.2.1 Effect of Membrane Tension on Dispersion Relation for the Beam with Bare Membranes 33 4.3 Dispersion Relation of the Metamaterial Beam with Membrane-Mass Structures 36 4.3.1 Effect of Membrane Tension on Dispersion Relation for the Beam with Membrane-Mass Resonators 39 4.3.2 Effect of Mass Magnitude on Dispersion Relation 42 4.3.3 Effect of Mass Location on Dispersion Relation 46 4.4 Analysis of the Metamaterial Beam with Multiple Kinds of Cells 50 4.4.1 Multiple Cells with Different Mass Magnitudes 50 4.4.2 Multiple Cells with Different Mass Locations 52 CHAPTER 5 Conclusions 55 References 57

    [1] M. M. Sigalas and E. N. Economou, “Elastic and acoustic wave band structure”, J. Sound Vib. 158(2), 377-382 (1992).
    [2] M. S. Kushwaha, P. Halevi, G. Martı´nez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Phys. Rev. B 49(4), 2313-2322 (1994).
    [3] M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia, “Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and point defects”, Phys. Rev. Lett. 82(15), 3054-3057 (1999).
    [4] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials”, Science 289(5485), 1734-1736 (2000).
    [5] K. M. Ho, C. K. Cheng, Z. Yang, X. X. Zhang, and P. Sheng, “Broadband locally resonant sonic shields”, Appl. Phys. Lett. 83(26), 5566-5568 (2003).
    [6] H. H. Huang and C. T. Sun, “Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density”, New J. Phys. 11, 013003 (2009).
    [7] Y. Xiao, J. Wen, and X. Wen, “Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators”, J. Phys. D: Appl. Phys. 45(19), 195401 (2012).
    [8] Y. Xiao, J. Wen, D. Yu, and X. Wen, “Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms”, J. Sound Vib. 332(4), 867-893 (2012).
    [9] J. S. Chen and Y. J. Huang, “Wave propagation in sandwich structures with multiresonators”, J. Vib. Acoust. 138, 041009 (2016).
    [10] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials”, J. Appl. Phys. 108(11), 114905 (2010).
    [11] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses”, J. Appl. Phys. 110(12), 124903 (2011).
    [12] J. S. Chen and D. W. Kao, “Sound attenuation of membranes loaded with square frame-shaped masses”, Math. Probl. Eng. 1740236 (2016).
    [13] M. Nouh, O. Aldraihem, and A. Baz, “Vibration characteristics of metamaterial beams with periodic local resonances”, J. Vib. Acoust. 136, 061012 (2014).
    [14] M. Nouh, O. Aldraihem, and A. Baz, “Metamaterial structures with periodic local resonances”, Proc. of SPIE 9064, 90641Y (2014).
    [15] M. Nouh, O. Aldraihem, and A. Baz, “Wave propagation in metamaterial plates with periodic local resonances”, J. Sound Vib. 341, 53-73 (2015).
    [16] M. Nouh, O. Aldraihem, and A. Baz, “Periodic metamaterial plates with smart tunable local resonators”, J. Intel. Mat. Syst. Struct. 27, 1829-1845 (2015).
    [17] G. B. Chai, “Free vibration of rectangular isotropic plates with and without a concentrated mass”, Comput. Struct. 48(3), 529-533 (1993).
    [18] K. H. Low, G. B. Chai, and C. K. Ng, “Experimental and analytical study of the frequencies of an S-C-S-C plate carrying a concentrated mass”, J. Vib. Acoust. 115, 391-396 (1993).
    [19] G. Temple and W. G. Bickley, “Rayleigh’s Principle and Its Applications to Engineering”, Dover Pubns., the U.S.A., 7-60 (1956).
    [20] P. Hagedorn and A. DasGupta. “Vibration and Waves in Continuous Mechanical Systems”, John Wiley & Sons Ltd, England, 179-229 (2007).
    [21] W. Leissa and A. Ghamat-Rezaei, “Vibrations of rectangular membranes subjected to shear and nonuniform tensile stresses”, J. Acoust. Soc. Am. 88(1), 231-238 (1989).
    [22] COMSOL Multiphysics電腦輔助分析模擬軟體學習寶典, 皮托科技.
    [23] 吳亮諭,“圓柱及橢圓柱聲子晶體負折射率聚焦與頻散之研究”, Department of Mechanical Engineering, National Cheng Kung University, Tainan (2007).
    [24] 尤建勳, 蕭巧郁, 和黃心豪, “彈性超穎結構樑的波傳行為探討與分析”, Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei (2014).

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE