簡易檢索 / 詳目顯示

研究生: 曾瑋晟
Zeng, Wei-Cheng
論文名稱: 導入快速初始反應機制至幾何Kullback-Leibler 資訊管制圖及其適用狀況
A geometric Kullback-Leibler information control chart with fast initial response and its applicable situations
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: 快速初始反應Kullback-Leibler資訊管制圖由後往前檢定平均連串長度幾何分配
外文關鍵詞: fast initial response, Kullback-Leibler information, backward empirical sequential test, average run length, geometric distribution
相關次數: 點閱:21下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步與品質管理觀念的普及,統計製程管制逐漸受到企業重視,大多數的產業都會研究監控不良率上升。因不良率的上升會導致製程能力下降,進而產生較多不良品。在化工、製藥業等較為複雜的製程中,若一開始就出現問題但沒有馬上偵測到,將產生許多成本。若導入快速初始反應機制,可以在製程開始就產生變異時加快管制圖之偵測速度,使操作人員及早發現問題並處理。FIR(fast initial response)快速初始反應機制,是統計製程管制中的一種策略,旨在即時識別製程變化或異常,並快速做出調整。本研究基於Kullback-Leibler資訊理論(KLI),以幾何分配構建管制圖,用於監控製程中的不良率上升。每次觀察樣本以一期為單位,幾何分配的觀察值大於一,計算量少於伯努利分配。本研究導入FIR 以提升偵測偏移的靈敏度與速度。研究中應用了無需設計參數的幾何KLI管制圖,降低操作難度且可偵測大範圍參數偏移。本研究首先回顧相關文獻,探討KLI 資訊理論的應用價值,說明FIR機制設計方式。接著建構幾何KLI管制圖並結合FIR,提升製程初期偏移偵測能力。最後建立成本效益分析模型,確認FIR機制適用性。

    This study introduces a fast initial response mechanism into the geometric Kullback-Leibler information control chart to monitor changes on detecting upward shifts in three levels of process defect rates (p = 0.1, 0.01, and 0.001). Its feature is that it does not require parameter settings and can detect a wide range of parameter shifts. The FIR feature is suitable for processes that are prone to errors. The study results indicate that introducing FIR at the situation where the parameters change at the beginning of the process results in a smaller correct alarm cost and a larger false alarm cost compared to the situation where the parameters do not change at the beginning of the process. The model proposed in this study helps users determine the timing for using this mechanism.

    目錄xii 表目錄xv 圖目錄xvi 第一章緒論1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 3 1.4模型假設 4 1.5論文架構 4 第二章文獻探討5 2.1管制圖績效指標 5 2.1.1平均連串長度(averagerunlength簡稱ARL) 5 2.1.2 AverageNumberofObservationstoSignal(ANOS) 6 2.1.3相對平均指標(relativemeanindex:RMI) 6 2.2修華特管制圖 7 2.2.1 p管制圖 7 2.2.2 Q管制圖 8 2.2.3 g管制圖與h管制圖 9 2.2.4累積合格品管制圖10 2.3時間加權管制圖 11 2.3.1累積和管制圖CUSUM 12 2.3.2指數加權移動平均管制圖EWMA 14 2.4 Kullback-LeiblerInformation管制圖 15 2.4.1 Kullback-Leiblerinformation 15 2.4.2相關Kullback-Leibler資訊管制圖之應用16 2.4.3赤池資訊準則 18 2.5一般化概似比管制圖 18 2.6快速初始反應機制 19 2.7小結 21 第三章建構管制圖22 3.1研究假設與符號設定 22 3.2研究流程架構 23 3.3伯努利過程與幾何分配 24 3.3.1監控不良率上升 24 3.4管制圖建構 26 3.4.1不良率計算 26 3.4.2幾何KLI 26 3.4.3計算管制界線 27 3.4.4導入FIR至幾何KLI管制圖 28 3.4.5分析FIR使用之時機 28 3.5小結 32 第四章結果分析33 4.1績效比較時的情境 33 4.1.1初始狀態下不同m值對ARL之影響 33 4.2 ARL0與α之對應關係 36 4.3穩定狀態下不同m值對ARL之影響 42 4.4 FIRKLI與KLI之績效比較 45 4.5實例探討 48 4.5.1實例探討分析-在樣本資料沒有偏移下監控 50 4.5.2實例探討分析-在樣本資料有偏移情形下監控 51 4.6成本模型建立 54 第五章研究結論與未來研究方向 57 5.1結論 57 5.2未來研究方向 58 參考文獻59

    中文文獻:
    王尊輿(民110)。用於監控不良率之幾何 Kullback-Leibler 資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
    李哲維(民110)。伯努利Kullback-Leibler資訊管制圖用於監控不合格率國立成功大學工業與資訊管理研究所碩士論文。
    呂倢瑩(民111)。用於監控批次生產之不合格率Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
    林煒倫(民113)。導入快速初始反應機制於Kullback-Leibler資訊管制圖監控製程平均數以及變異數並分析其使用時機。國立成功大學工業與資訊管理研究所碩士論文。
    房宣名(民113)。建構多項分配Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
    張景富(民112)。導入快速初始反應機制至Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
    趙昱琳(民111)。用於監控不良率之負二項Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
    英文文獻:
    Alwan, L. C., Ebrahimi, N., & Soofi, E. S. (1998). Information theoretic framework for process control. European Journal of Operational Research, 111(3), 526-542.
    Borror, C. M., Montgomery, D. C., & Runger, G. C. (1999). Robustness of the EWMA control chart to non-normality. Journal of Quality Technology, 31(3), 309-316.
    Bourke, P. D. (1991). Detecting a shift in fraction nonconforming using run-length control charts with 100-percent inspection. Journal of Quality Technology, 23(3), 225-238.
    Bourke, P. D. (2018). Choosing parameter values for a geometric CUSUM chart for detecting an upward shift in a proportion. Quality Engineering, 30(4), 621-634.
    Bourke, P. D. (2020). Detecting a downward shift in a proportion using a geometric CUSUM chart. Quality Engineering, 32(1), 75-90.
    Calvin, T.W. (1983) Quality-control techniques for “zero defects”. IEEE Transactions on Components Hybrids and Manufacturing Technology, 6(3), 323-328.
    Chang, Y. C. (2022). A design parameter-free geometric Kullback-Leibler information control chart for monitoring Bernoulli processes. Computers & Industrial Engineering, 1-17.
    Goh, T. N. (1987). A control chart for very high yield processes. Quality Assurance, 13(1), 18-22.
    Gan, F.F. (1993) An optimal design of CUSUM control charts for binomial counts. Journal of Applied Statistics, 20(4), 445-460.
    Huang, W., Reynolds, M. R., & Wang, S. (2012). A binomial GLR control chart for monitoring a proportion. Journal of Quality Technology, 44(3), 192-208.
    Huang, W., Wang, S., & Reynolds, M. R. (2013). A generalized likelihood ratio chart for monitoring Bernoulli processes. Quality and Reliability Engineering International, 29(5), 665-679.
    Han, D., & Tsung, F. G. (2006). A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association, 101(473), 368-386.
    Kanagawa A., Arizono I., & Ohta, H. (1997). Design of the (x ̅,s) control chart based on Kullback-Leibler information. Frontier in Statistical Quality Control, 5(14), 183–192.
    KazemiNia, A., Gildeh, B. S., & Ganji, Z. A. (2018). The design of geometric generalized likelihood ratio control chart. Quality and Reliability Engineering International, 34(5), 953-965.
    Kullback, S. (1978). Information theory and statistics, Dover Publications, New York.
    Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79-86.
    Kupperman, M. (1956). Further applications of information-theory to multivariate-analysis and statistical-inference. Annals of Mathematical Statistics, 27(4),1184-1186.
    Kaminsby, F. C., Benneyan, J. C., Davis, R. D., & Burke, R. J. (1992). Statistical control charts based on geometric distribution. Journal of Quality Technology, 24(2), 63-69.
    Page, E.S. (1954) Continuous inspection schemes. Biometrika, 41(1), 100-115.
    Perry, M. B. (2020). An EWMA control chart for categorical processes with applications to social network monitoring. Journal of Quality Technology, 52(2), 182-197.
    Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 213-224.
    Reynolds, M. R. (2013). The Bernoulli CUSUM chart for detecting decreases in a proportion. Quality and Reliability Engineering International, 29(4), 529-534.
    Reynolds, M. R., & Stoumbos, Z. G. (2000). A general approach to modeling CUSUM charts for a proportion. IIE Transactions, 32(6), 515–535.
    Roberts, S.W. (1959) Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
    Reynolds Jr, M.R. and Stoumbos, Z.G. (1999) A CUSUM chart for monitoring a proportion when inspecting continuously. Journal of Quality Technology, 31(1), 87-108.
    Sun, J., & Zhang, G. X. (2000). Control charts based on the number of consecutive conforming items between two successive nonconforming items for the near zero-nonconformity processes. Total Quality Management, 11(2), 235-250.
    Szarka, J. L., & Woodall, W. H. (2012). On the equivalence of the Bernoulli and geometric CUSUM charts. Journal of Quality Technology, 44(1),55-62.
    Spliid, H. (2010) An exponentially weighted moving average control chart for Bernoulli data. Quality and Reliability Engineering International, 26(1), 97-113.
    Tagaras, G. (1998) A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3), 212-231.
    Xie, M., Lu, X. S., Goh, T. N., & Chan, L. Y. (1999). A quality monitoring & decision-making scheme for automated production processes. International Journal of Quality & Reliability Management, 16(2), 148-157.
    Yeh, A. B., McGrath, R. N., Sembower, M. A., & Shen, Q. (2008). EWMA control charts for monitoring high-yield processes based on non-transformed observations. International Journal of Production Research, 46(20), 5679–5699.
    Yun, M., & Youlin, Z. (1996). Q control charts for negative binomial distribution. Computers & Industrial Engineering, 31(3-4), 813-816.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE