| 研究生: |
李信委 Li, Shinn-Wei |
|---|---|
| 論文名稱: |
AZ31B鎂合金室溫至500℃之拉伸性質與其變形組織探討 A Study on the Tensile Properties and Deformation Microstructures of AZ31B Mg Alloy from Room Temperature to 500℃ |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 晶界滑移 、動態再結晶 、高溫拉伸 、鎂合金 |
| 外文關鍵詞: | grain boundary sliding, tensile properties, dynamic recrystallization, Mg alloys |
| 相關次數: | 點閱:78 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究採用AZ31B鎂合金之完全退火材於室溫至500℃之間,在固定初始應變速率為8.0×10-4s-1的條件下進行拉伸試驗,並觀察其變形組織特徵,以瞭解其變形組織與拉伸特性的溫度依存性。
拉伸試驗結果顯示,在200℃以上的應力-應變曲線可以觀察到有抖動的情形產生,這是由於材料在拉伸過程產生動態再結晶所導致。材料的降伏以及抗拉強度僅隨溫度上升而下降,總延伸率則隨溫度上升而增加,並於450℃達到最大值;而均勻延伸率隨著溫度上升而呈現先降後升的趨勢。
經由次表面的觀察顯示,AZ31B鎂合金的變形組織會隨溫度改變而呈現不同形貌。首先,室溫及100℃可觀察到形變雙晶產生於高應變量的晶粒內,且產生雙晶所需的晶粒應變會隨著溫度升高而增加。在200~500℃的次表面觀察不到形變雙晶,但是會有動態再結晶的產生,而且再結晶的晶粒徑會隨溫度上升而增加。此外,在350~500℃則可以觀察到因晶界滑移行為所產生的晶粒偏移及晶界遷移現象。
綜合探討AZ31B鎂合金的變形組織與均勻塑性變形能力的關係;根據n值的量測結果,動態再結晶的產生會降低材料的加工硬化率,因此會促進頸縮行為的發生並降低材料的均勻延伸率。而晶界滑移所導致的應變速率硬化效果,則會降低動態再結晶對於材料的軟化作用,進而增加AZ31B鎂合金在400~500℃的均勻延伸率,並因抑制頸縮現象的進一步發生,而增加高溫延性。
在500℃會由於γ相Mg17Al12的完全消失而產生異常粗大晶粒,減少其晶界面積;此一現象不利於動態再結晶及晶界滑移的產生,因而導致500℃的總延伸率會略低於450℃的試片。
ABSTRACT
The tensile tests of fully-annealed AZ31B Mg alloy were performed at a constant initial strain rate of 8.0×10-4s-1 from room temperature to 500℃, and the characteristics of the deformed microstructure was examined to investigate the features of deformation structure and tensile properties against the tensile temperature.
Experimental results indicate that the serrations of stress-strain curve could be observed above 200℃ which resulted from dynamic recrystallization (DRX). Also, the flow stress of the specimens decreased with increasing temperature. Total elongation increased with a raising temperature and then reached a maximum value at 450℃. Notably, there was a decrease in the uniform elongation with a higher tensile temperature, but this tendency reverses when the temperature exceeded 400℃.
There were some differences in the deformation microstructure when the tensile was performing at different temperatures. Twinning was observed in heavily deformed grains at room temperature and 100℃, and a higher plastic strain was needed for obtaining twins when the tensile temperature was raised. No deformation twins can be observed when the tensile temperature reached 200℃. Meanwhile, DRX took place and the recrystallized grain size was getting more lager with a higher temperature. In addition, grain rotation and grain boundary migration due to grain boundary sliding (GBS) were observed from 350℃ to 500℃.
Relationship between the ability of uniformly plastic deformation (which can be presented by the strain hardening exponent (n)) and deformation microstructural features indicate that DRX softened the structure and induced local necking and thus the uniform elongation was reduced when the tensile temperature ranging from 200℃ to 400℃. Strain rate hardening due to GBS suppressed the DRX softening and local necking so that the uniform and total elongations tended to increase at the temperatures of 400℃ and 500℃.
In addition, when the specimen was tensiled at 500℃, dissolution of γphase Mg17Al12 resulted in abnormal grain growth and less total grain boundary area, which was disadvantageous to the DRX and GBS, and hence the total elongation at 500℃ was lower than that at 450℃.
參考文獻
1. I.J. Polmear, “Recent Developments in Light Alloys”, Mater. Trans., JIM, Vol. 37(1), 1996, pp. 12-31.
2. I.J. Polmear, “Magnesium Alloys and Applications”, Mater. Sci. Technol., Vol. 10(1), 1994, pp. 1-15.
3. Z. Zhang, A. Couture and A. Luo, “An Investigation of the Properties of Mg-Zn-Al Alloys”, Scripta Mater., Vol.39 (1), 1998, pp. 45-53.
4. D. Magers and J. Willekens, “Global Outlook on the Use of Magnesium Die-Castings in Automotive Applications”, Proc. Magnesium Alloys and Their Applications, ed. by B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Frankfurt, 1998, pp. 105-112.
5. R. Derker, R. Carnahan, R. Vining, D. Walukas, S. Lebeau and N. Prewitt, “Thixomolding Mg based alloys”, Proc. Magnesium Alloys and Their Applications, ed. by B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Frankfurt, 1998, pp. 545-550.
6. B. Bark, C. Berk and E. Hauschel, “Magnesium Die-Castings—Examples from a Supplier”, Proc. Magnesium Alloys and Their Applications, ed. by B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Frankfurt, 1998, pp. 495-500.
7. M. Mabuchi, K. Kubota and K. Higashi, “New Recycling Process by Extrusion for Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars”, Mater. Trans., JIM, Vol. 36(10), 1995, pp. 1249-1254.
8. M. Mabuchi, K. Kubota and K. Higashi, “Tensile Strength, Ductility and Fracture of Magnesium-Silicon Alloys”, J. Mater. Sci., Vol. 31, 1996, pp. 1529-1535.
9. M. Mabuchi and K. Higashi, “Strengthening Machanisms of Mg-Si Alloys”, Acta Mater., Vol. 44, 1996, pp. 4611-4618.
10. M. M. Avedesian and H. Baker, ASM Specialty Handbook-Magnesium and Magnesium Alloys, ASM Metals Park, OH, 1999, pp. 13-43.
11. T. Obara, H. Yoshinga and S. Morozumi, “{1122}<1123> Slip System in Magsium”, Acta Metall., Vol. 21, 1973, pp. 845-853.
12. 王建義, “鎂合金板材之壓形加工”, 工業材料雜誌, 170期, 90年2月。
13. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, “Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recystallization”, Mater. Trans., Vol. 42(7), 2001, pp. 1200-1205.
14. A. Bussiba, A. Ben Artzy, A. Shtechman, Sifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys-Towards Superplasticity Studies”, Mater. Sci. Eng., A302, 2001, pp. 56-62.
15. K. Kubota, M. Mabuchi and K. Higashi, “Processing and Mechanical Properties of Fine-grained Magnesium Alloys”, J. Mater. Sci., Vol. 34, 1999, pp. 2255-2262.
16. H. Takuda, S. Kikuchi and N. Hatta, “Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-Deformation”, J. Mater. Sci., Vol. 27, 1992, pp. 937-940.
17. T. Mohri, T. Nishiwaki, T. Kinoshita, H. Iwasaki, M. Mabuchi, M. Nakamura, T. Ashina, T. Aizawa and K. Higashi, “Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy”, Mater. Trans., JIM, Vol. 41(9) , 2000, pp. 1154-1156.
18. H. J. McQueem, N. D. Ryan, E. V. Konopleva and X. Xia, “Formation and Application of Grain Boundary Serrations”, Can. Metall. Q., Vol. 34(3), 1995, pp. 219-229.
19. T. Sakai and M. Ohashi, “The Effect of Temperature, Strain Rate and Carbon Content on the Hot Deformation of Carbon Steels”, J. Iron Steel Inst. Jpn., Vol. 67(11), 1981, pp. 2000-2009.
20. T. Sakai and J. J. Jonas, “Dynamic Recrystallization: Mechanical and Microstructural Considerations”, Acta Metall., Vol. 32(2), 1984, pp. 189-209.
21. J. P. Sah, G. J. Richardson and C. M. Sellars, “Grain-Size Effects During Dynamic Recrystallization of Nickel”, Metal. Sci., Vol. 8(10), 1974, pp. 325-331.
22. J. W. Edington, K. N. Melton and C. P. Cutler, “Superplasticity”, Prog. Mater. Sci., Vol. 21, 1976, pp. 61-158.
23. O. D. Sherby and J. Wadsworth, “Superplasticity-Recent Advances and Furture Direction”, Prog. Mater. Sci., Vol. 33, 1989, pp. 169-221.
24. G. Rai. and N. J. Grant, “Observations of Grain Boundary Sliding during Superplasticity Deformation”, Metall. Trans., Vol. 14A, 1983, pp. 1451-1458.
25. M. Zhao and P. Chen, “A Complex Mechanism for Superplastic Deformation of Magnesium Alloys”, Warrendale, PA, Minerals, Metals and Materials Society, 1988, pp. 67-71.
26. T. G. Langdon, “An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity”, Mater. Sci. Eng., A174, 1994, pp. 225-230.
27. N. Osada, K. Ohtoshi, M. Katsuta, S. Takahashi and T. Yamada, “The Influence of the Annealing Temperature on Uniaxial and Biaxial Deformation of the AZ31 Magnesium Alloy Sheet”, J. JIM, Vol. 50(2), 2000, pp. 60-64.
28. 曾鴻傑, AZ31鎂合金高溫拉伸之變形破壞特性探討, 國立成功大學材料科學及工程學系碩士論文, 民國90年。
29. O. A. Kaibyshev, “Relationship between Mechanisms of Deformation and Development of Dynamic Recrystallization”, Recrystallization '90, Warrendale, PA, Minerals, Metals, and Materials Society, 1990, pp. 855-860.
30. H. J. McQueen, E. Evangelista and N. D. Ryan, “Dynamic Recrystallization and Recovery: Mechanical and Kinetic Behaviour; Nucleation and Growth Mechanisms”, Recrystallization '90, The Minerals, Metals & Materials Society, 1990, pp. 89-100.
31. A. Mwembela, E. B. Konpleva and H. J. McQueen, “Microstructural Development in Mg Alloy AZ31 during Hot Working”, Scripta Mater., Vol. 37(11), 1997, pp. 1789-1795.
32. S. E. Ion, F. J. Humphreys and S. H. White, “Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium”, Acta Metall., Vol. 30, 1982, pp. 1909-1919.
33. R. Kaibyshev and O. Sitdikov, “Dynamic Recrystallization of Magnesium at Ambient Temperature”, Z. Metallkd., Vol. 85(10), 1994, pp. 738-743.