| 研究生: |
陳嘉宏 Chen, Jia-Hong |
|---|---|
| 論文名稱: |
以Yagi-Uda奈米天線陣列實現表面電漿子操控Smith-Purcell輻射產生匯聚光點研究 Generation of convergent light spot by surface plasmon manipulated Smith-Purcell radiation on Yagi-Uda nanoantenna arrays |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 電子束 、表面電漿 、Smith-Purcell輻射 、Yagi-Uda奈米天線陣列 |
| 外文關鍵詞: | Electron beam, surface plasmon, Smith-Purcell Radiation, Yagi-Uda nanoantenna arrays |
| 相關次數: | 點閱:173 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當電子束通過週期性金屬光柵時,激發出Smith-Purcell輻射,此輻射可透過光柵週期來改變輻射角度。若再透過Surface Plasmon特性來提升特定輻射的波段,即可產生指向性的單頻輻射波。然而目前Smith-Purcell輻射只能產生沿電子束方向的輻射波,所以我們增加Yagi-Uda奈米天線陣列的機制來產生與電子束方向垂直輻射的特性並進行討論。
本研究利用FDTD Lumerical solution進行模擬,在Yagi-Uda奈米天線陣列上利用表面電漿操控Smith-Purcell輻射來產生匯聚光點的研究。我們分析三種不同類型的Yagi-Uda奈米天線的驅動器來產生匯聚光點,分別為在共振下長軸與偏振方向呈平行與垂直及在非共振下的條件,而我們發現到共振條件的奈米天線,其輻射角度為50度,而非共振條件為60度。另外,我們可以改變非共振條件的驅動器尺寸來改變遠場的輻射強度,並以此特性來設計出多個光點的結果,本研究可提供一個新方法在光學成像、全息術等領域中。
In this work, the generation of convergent light spot via using electron beam moving parallel to the Yagi-Uda nanoantenna arrays based on surface plasmon-manipulated Smith-Purcell radiation is proposed and investigated by FDTD simulation. We demonstrated three different types of Yagi-Uda nanoantenna’s feed to generate convergent light spot : the polarization which is parallel, vertical to the long axis of the feed under resonance and under non-resonance condition. In the case of resonance, the emission angle of the nanoantenna is 50 degree, while the non-resonance is 60 degree. Moreover, the size of the non-resonant feed can change the radiation intensity of the far field, so we can do more optical control on the optical element. This work offers potential applications in the fields of optical imaging, holography, etc.
[1]吳民耀, 劉威志, “表面電漿子理論與模擬”, 物理雙月刊, 28卷, 2期, pp. 486-496, 2006.
[2] D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, K. Imasaki, ” Theoretical Analysis on Smith-Purcell Free-Electron Laser”, Free Electron Lasers, Dr. Sandor Varro (Ed.), 2012.
[3] Kosako, T., Kadoya, Y. & Hofmann, H. F. , “ Directional control of light by a nano-optical Yagi–Uda antenna”, Nature Photon. 4, 312, 2010.
[4]Garnett W. Bryant, F. Javier Garcia de Abajo, Javier Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas”, Nano Letter. 8, 631, 2008.
[5] Atwater, H. A, “The promise of plasmonics”,Sci. Am. 296, 56, 2007.
[6]邱國斌, 蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 28卷, 2期, pp. 472-483, 2006.
[7] Maier, S, “Plasmonics: Fundamentals and Applications”, Springer, New York, 2007.
[8] Sen Gong, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Tao Zhao and
Shenggang Liu, “ Electron beam excitation of surface plasmon polaritons ”, Opt. Express 22, 19252, 2014.
[9]Willets, K. A. and Van Duyne, R. P , “Localized surface plasmon resonance spectroscopy and sensing”, Annu. Rev. Phys. Chem. 58, 267, 2007.
[10] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302, 1966.
[11]藍永強, 邱行偉, “電漿模擬”, 物雙月刊,28卷,2期, pp.498, 2006
[12]呂英華, “計算電磁學數值方法”, 清華大學出版社有限公司, 2006.
[13] J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys. 114, 185, 1994.
[14] Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B , 6, 4370, 1972.
校內:2020-08-30公開