| 研究生: |
洪國荃 Hung, Guo-Quan |
|---|---|
| 論文名稱: |
非線性距離衡量方式在鄰近限制群聚法上之應用 Application of a Nonlinear Metric on Contiguity-constrained Clustering |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 外文關鍵詞: | Clustering analysis, Contiguity-constrained clustering method, Self-organizing map |
| 相關次數: | 點閱:168 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
None
The self-organizing map (SOM) network model is designed to solve problems that involve tasks such as clustering, visualization, and abstraction. When the number of SOM units is large, similar units of the map need to be grouped in order to facilitate analysis of the self-organizing map and the data. This thesis extends the original Kohonen SOM network model by including a contiguity-constrained clustering method based on a nonlinear metric to perform clustering of the SOM units generated by the Kohonen SOM network model. This nonlinear metric is proven to be more robust than the Euclidean norm in the context of c-means clustering and fuzzy c-means clustering. This thesis is to explore the performance of this two-level clustering algorithm when it is in the presence and in the absence of the nonlinear metric, and make a comparison between this two-level clustering method and other clustering algorithms by using real-world data in three different domains.
Anderberg, M. R. Cluster Analysis for Applications. New York: Academic Press, 1973.
Bimbo, A. D., Landi, L. and Santini, S. Three-dimensional planar-faced object classification with Kohonen maps. Optical Engineering, 32(6), 1222-1234, 1993.
Bolshakova, N. and Azuaje, F. 2003. Improving expression data mining through cluster validation. In Fourth Annual IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine.
Brown, P. http://cmgm.stanford.edu/pbrown/sporulation. Stanford University, 1999.
Davies, D. L. and Bouldin, D. W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224-227, 1979.
Dittenbach, M., Rauber, A. and Merkl, D. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing, 48, 199-216, 2002.
Duda, R. O. and Hart, P. E. Pattern Classification and Scene Analysis. New York: Wiley, 1973.
Dunn, J. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4, 95-104, 1974.
Everitt, B. S. Cluster Analysis. New York: Oxford University Press, 1993.
Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188, 1936.
Fu, L. M. Neural Networks in Computer Intelligence. McGraw-Hill, 1994.
Halkidi, M., Batistakis, Y. and Vazirgiannis, M. On clustering validation techniques. Journal of Intelligent Information Systems, 17, 107-145, 2001.
Helsen, K. and Green, P. A. A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22(5), 1124-1141, 1991.
Huber, P. J. Robust Statistics. New York: Wiley, 1981.
Jain, A. K. and Dubes, R. C. Algorithms for Clustering Data. Englewood Cliffs, New Jersey: Prentice Hall, 1988.
Kiang, M. Y. Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics & Data Analysis, 38, 161-180, 2001.
Kohonen, T. Self-Organization and Associative Memory. Berlin, Heidelberg, Germany: Springer-Verlag, 1989.
Kohonen, T. 1990. The self-organizing map. In Proceedings of the IEEE (Vol. 78, pp.
1464-1480).
Leinonen, L., Hiltunen, T., Torkkola, K. and Kangas, J. Self-organized acoustic feature map in detection of fricative-vowel coarticulation. Journal of the Acoustical Society of America, 93(6), 3468-3474, 1993.
Mangiameli, P., Chen, S. K. and West, D. A comparison of SOM neural network and
hierarchical clustering methods. European Journal of Operational Research, 93, 402-417, 1996.
Manikopoulos, C. N. 1993. Finite state vector quantisation with neural network classification of states. In IEE Proceedings-F (Vol. 140, pp. 153-161).
McCulloch, W. S. and Pitts, W. A logical calculus of the ideas immanent in nervous activity. Mathematical Biophysics, 5, 115-133, 1943.
Merkl, D. and Rauber, A. 2000. Uncovering the hierarchical structure of text archives by using an unsupervised neural network with adaptive architecture. In Proceedings of the 4th Pacific Asia Conference on Knowledge Discovery and Data
Mining (pp. 384-395). Kyoto, Japan.
Mitchell, A. P. Control of meiotic gene expression in saccharomyces cerevisiae. Microbiological Reviews, 58, 56-70, 1994.
Murtagh, F. Multidimensional Clustering Algorithms. WÄurzburg: Physica-Verlag, 1985.
Murtagh, F. Interpreting the Kohonen self-organizing map using contiguity-constrained
clustering. Pattern Recognition Letters, 16, 399-408, 1995.
Pampalk, E., Widmer, G. and Chan, A. 2003. A new approach to hierarchical clustering and structuring of data with self-organizing maps (Technical Report No. 2). Department of Medical Cybernetics and Artificial Intelligence.
Ritter, H., Martinetz, T. and Schulten, K. Neural Computation and Self-Organizing Maps: An Introduction. Reading, Massachusetts: Addison-Wesley, 1992.
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65, 1987.
Rudin, W. Principles of Mathematical Analysis. New York: McGraw-Hill, 1976.
Tomida, S., Hanai, T., Honda, H. and Kobayashi, T. Analysis of expression profile using fuzzy adaptive resonance theory. Bioinformatics, 18(8), 1073-1083, 2002.
Vesanto, J. and Alhoniemi, E. Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586-600, 2000.
Walter, J. A. and Schulten, K. J. Implementation of self-organizing neural networks for visuo-motor control of an industrial robot. IEEE Transactions on Neural Networks, 4(1), 86-95, 1993.
Wu, K. L. and Yang, M. S. Alternative c-means clustering algorithms. Pattern Recognition, 35, 2267-2278, 2002.