簡易檢索 / 詳目顯示

研究生: 吳明道
Wu, Min-Tao
論文名稱: 陽極氧化之奈米多孔氧化鋁的研究
Preparation of nanoporous anodic alumina by anodization of aluminum
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 109
中文關鍵詞: 奈米陽極化氧化鋁
外文關鍵詞: alumina, anodization, nano
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      本研究於不同表面性質之鋁箔片基材及具不同中介層之矽基鋁膜上進行陽極化,觀察基材性質對鋁陽極化行為之影響,並利用不導電中介層之矽基氧化鋁模板電鍍,比較其與傳統模板輔助電鍍之差異。

      本文共分四部分,包括:(1)表面拋光前處理對製備規則奈米孔陣列多孔氧化鋁之影響,(2)長時間陽極化之多孔氧化鋁成長行為,(3)中介層對矽基鋁膜陽極化行為之影響,以及(4)未加導電中介層之矽基氧化鋁模板上鎳金屬電鍍行為。

      鋁基材經機械拋光,陽極化所得多孔氧化鋁孔洞形狀及排列均不規則,延長陽極化時間並未能得到大面積規則奈米孔陣列之多孔氧化鋁。電化學拋光後,鋁基材表面粗糙度為5nm以下。將具不同表面微結構之鋁金屬基材於相同條件下陽極化,可得規則奈米孔陣列面積約4~6 m2之多孔質氧化鋁,顯示基材表面粗糙度降至數個奈米時,多孔質氧化鋁之特徵由陽極化條件決定。

      無論基材電化學拋光與否,陽極化電流僅於低溫下呈現穩定下降且氧化鋁呈現穩定成長。提升溫度導致陽極電流於陽極化後期呈上升趨勢且於氧化鋁/電解液界面產生缺陷。改變陽極化溫度並未能於機械拋光基材上製備大面積規則奈米孔之多孔氧化鋁模板。以電化學拋光基材於低溫下陽極化,規則奈米孔陣列面積與氧化鋁厚度於陽極化過程中均呈增加趨勢。溫度升高時,規則奈米孔陣列於陽極化中發生規則-不規則轉變,而氧化鋁有剝落現象。

      對矽基鋁薄膜而言,當中介層為Si及Ti時,陽極化後期出現一電流回復現象,氧化鋁孔洞底部於Al-Si及Al-Ti界面處產生額外孔洞及斜向孔洞,孔洞底部由半球形轉變為拱形。當中介層為SiO2時,基材於鋁膜完全氧化後電流則趨近於零,孔洞底部僅有斜向孔洞。以Au為中界層,鋁膜完全氧化後,因Au界面產生水解反應,導致電流急速上升。並破壞Au中介層上因水解反應所產生之圖案。此外,水解反應降低氧化鋁模板在基材上之附著性,導致模板與基材分離。

      以未加導電中介層之矽基氧化鋁模板電鍍金屬鎳時,氧化鋁模板於高過電位下因介電崩潰而帶電,鎳金屬在氧化鋁膜板表面沉積。矽基多孔氧化鋁模板於電鍍初期所得鎳金屬顆粒平均密度高於矽晶片所得者,顯示金屬於矽基多孔氧化鋁模板上較易成核。過電位較低時,鎳金屬僅於氧化鋁/電解液界面形成一含鎳奈米點之連續鎳金屬層。而過電位較高時,沉積物可填滿氧化鋁奈米孔,形成一含鎳金屬奈米線之連續鎳金屬層。在高過電位所得到之鎳奈米結構含實心多晶、單晶奈米線及鎳奈米管。奈米管之生成顯示即使於高過電位下,沉積仍由氧化鋁模板表面開始,亦可能生成單晶奈米線。

    Abstract

     In this study, one step anodization was carried out on both the Al foils with different surface features resulted from different polishing conditions and the Si-based Al films containing different interlayers to investigate the effect of substrate parameters on the anodization behaviors.

     This study is divided into four parts, including (1) the effect of polishing pretreatment on the fabrication of ordered nanopore arrays on aluminum foils by anodization, (2) growth characteristics of oxide during prolonged anodization of aluminum in preparing ordered nanopore arrays, (3) anodization behavior of Al film on Si substrate with different interlayers, and (4) the electrodeposition behavior of Ni on silicon-based porous anodic alumina templates without a conductive interlayer.

     When the non-electropolished Al substrate is anodized, only limited-sized ordered domains could be obtained even prolonging the anodization duration. After electropolishing, the average surface roughness is below 5nm for all the Al foils. Nearly perfect hexagonal close-packed ordered pore arrays with domain size of about 4~6μm2 could be obtained on the electropolished Al substrate even with different surface features, indicating that the characteristics of porous anodic alumina are determined by the anodization parameters when the average surface roughness is reduced to several nanometers.

     At a low anodization temperature, the continuous decrease of oxidation current in the whole anodizing process is attributed to the stable oxide growth. A continuous increase of the oxidation current with fluctuation is observed in a prolonged period of anodization at high temperatures; at the same time, some cracks are formed at the oxide/electrolyte interface. A highly ordered pore configuration obtained on the electropolished Al foil for longer anodization time could only be maintained at a low temperature. When anodizing at a high temperature, the ordered pore arrangement of the oxide obtained initially on the electropolished Al foil is found to become disordered in the prolonged anodization. The total film thickness increases in the beginning and decreases in the prolonged period due to the spalling of the oxide when the anodization is conducted at a high temperature.

     For the preparation of nanoporous template on the Si-based Al film containing Si and Ti interlayer, an immediate recovery of current occurs on the Al-Si interlayer after the Al film is completely consumed. The pore bottom becomes arched due to the additional dissolution under the pore base and the oblique dissolution beside the pore base. When the interlayer is SiO2, the current approaches zero when the Al film is consumed completely, only the oblique pore is formed in the pore base. For the Si-based PAA template containing Au interlayer, the hydrolysis reaction would destroy the patterns formed on the Au interlayer and lead to the separation between the PAA and the substrate.

     Through the electrical breakdown of the template, Ni nanodots, nanowires and nanotubes could be obtained by only changing the electrodeposition voltage on the same substrate. At a less negative voltage, a Ni layer containing only nanodots is formed at the oxide/electrolyte interface. The electrodeposition still occurs on the pore wall instead of the underlying substrate, leading to the formation of some Ni nanotubes at a more negative voltage. Besides, single-crystalline Ni nanowires could also be formed even when the electrodeposition voltage is as negative as -40V, indicating that the formation of single-crystalline metallic nanowires under a large overpotential is possible.

    總目錄 中文摘要 I 英文摘要 III 總目錄 V 表目錄 VII 圖目錄 VIII 英漢名詞與符號對照表  XII 第一章 緒論 1 第二章 理論基礎 5 2-1 電化學拋光 5 2-2 鋁金屬陽極化 11 2-2-1 多孔氧化鋁形態 11 2-2-2 陽極氧化反應 12 2-2-3 多孔氧化鋁孔洞成核及成長 14 2-2-4多孔氧化鋁組成 18 第3章 實驗方法與步驟 22 3-1實驗流程 22 3-2 陽極化設備 23 3-3 實驗原料 23 3-4 實驗步驟 25 3-5分析與鑑定 26 第四章 結果與討論 28 4-1 表面微結構對製備奈米多孔氧化鋁之影響 28 4-1-1拋光前處理對奈米孔形態之影響 28 4-1-2 拋光前處理對陽極化電流之影響 33 4-1-3 小結 47 4-2長時間陽極氧化所得之多孔質氧化鋁的特性 48 4-2-1 溫度對氧化鋁形態之影響 48 4-2-2 溫度對陽極化電流之影響 49 4-2-3 溫度對孔洞自組織行為之影響 51 4-2-4 溫度對氧化鋁厚度之影響 58 4-2-5 小結   63 4-3 矽晶片上不同界面之鋁膜陽極化行為 64 4-3-1 中界層對陽極化電流之影響 64 4-3-2中界層對界面形態變化之影響 64 4-3-3 小結 80 4-4 矽基氧化鋁薄膜上鎳電鍍特性之探討 81 4-4-1 矽基氧化鋁薄膜電鍍之電流變化 81 4-4-2 矽基氧化鋁薄膜之鎳金屬電鍍行為 84 4-4-3 小結 95 第五章總結論 96 參考文獻 98 致謝  106 自述  107

    參考文獻

    [1]蕭宏,半導體製程技術導論 (2002), p175, 台灣培生教育出版股份有限公司。
    [2] P.M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R.E. Palmer, J.A. Preece, S.D. Evans, and D. Fitzmaurice, “Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography,” Langmuir 20 (2004) 3766.
    [3] Y.W. Su, C.S. Wu, C.C. Chen, and C.D. Chen, “Fabrication of two-dimensional arrays of CdSe pillars using e-beam lithography and electrochemical deposition,” Advan. Mater. 15 (2003) 49
    [4] Y. Gonin, F. Munnik, F. Benninger, S. Mikhailov, “Creating sub-surface channels in PMMA with ion beam lithography in only one step,” App. Sur. Sci. 217 (2003) 289.
    [5] K.L. Scott, T.J. King, M.A. Lieberman, K.N. Leung, “Pattern generators and microcolumns far ion beam lithography,” J. Vac. Sci. Technol. B 18 (2000) 3172.
    [6] I.H Sung, D.E Kim, “Nano-scale patterning by mechano-chemical scanning probe lithography,” App. Sur. Sci. 239 (2005) 209.
    [7] M. Rolandi, I. Suez, H.J. Dai, J.M.J. Frechet, “Dendrimer monolayers as negative and positive tone resists for scanning probe lithography,” Nano Lett. 4 (2004) 889.
    [8]D. Dobrev, J. Vetter, N. Angert, and R. Neumann, “Growth of ion single crystal in the etched ion tracks of polymer foils,” Appl. Phys. A 72 (2001) 729.
    [9] D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, “Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks,” Adv. Mater. 12 (2000) 1252.
    [10] P. M. Paulus, F. Luis, M. Kroll, G. Schmid, L. J. de Jongh, “Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires,” J. Magn. Mater. 224 (2001) 180.
    [11] Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, and X. M. Bao, “US nanocrystallites prepared by chemical and physical templates,” Acta Materia. 50 (2002) 5085.
    [12] S.L. Kuai, V.V. Truong, A. Hache, and X.F. Hu, “A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates,” J. Appl. Phy. 96 (2004) 5982.
    [13] A.E. Saunders, P.S. Shah, M.B. Sigman, T. Hanrath, H.S. Hwang, K.T. Lim, K.P. Johnston, and B.A. Korgel, “Inverse opal nanocrystal superlattice films,” Nano Lett. 4 (2004) 1943.
    [14] N. Hall, G. Ozin, “The photonic opal - the jewel in the crown of optical information processing,” Chem. Commu. (2003) 2639.
    [15] M. A. Barrett and A. B. Winterbottom, “1st international congress on metal corrosion, 1961” Butterworth & Co., London, 1962, p657.
    [16] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coating on aluminium,” J. Electro. Soc. 100 (1953) 411.
    [17] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a 2-step replication of honeycomb structure of anodic alumina,” Science 268 (1995) 5216.
    [18] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda , “Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al,” J. Electrochem. Soc. 148 (2001) B152.
    [19]H. Asoh, K. Nishio, M. Nakao, A. Yakoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” J. Vac. Sci. Technol. B. 19 (2001) 569.
    [20] N. Tsuya, T. Tokushima, M. Shiraki, Y. Wakui, Y. Saito, H. Nakamura, S Hayano, A. Furugori, and M. Tanaka, “Alumite disk using anodic oxidation,” IEEE Trans. Magn. 22 (1986) 1140.
    [21] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates,” Nano Lett. 4 (2004) 167.
    [22] B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, “Sol-gel template synthesis of semiconductor nanostructures” Chem. Mater. 9 (1997) 857.
    [23] Y. C. Wang, I. C. Leu, and M. H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition,” J. Mater. Chem. 12 (2002) 2439.
    [24] S. Langa, J. Carstensen, I.M. Tiginyanu, M. Christophersen, and H. Foll, “Formation of tetrahedron-like pores during anodic etching of (100) oriented n-GaAs,” Electro. Solid State Lett. 5 (2002) C14.
    [25] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Föll “Self-organized growth of single crystals of nanopores,” Electrochim. Acta 49 (2004) 3129.
    [26] O. Jessensky, F. Müller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina,” J. Electrochem. Soc. 145 (1998) 3735.
    [27] H. Masuda, F. Hasegwa, and S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution,” J. Electrochem. Soc. 144 (1997) L127.
    [28] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023.
    [29] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173.
    [30] H. Masuda, K. Yada, A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys., Part 2 37 (1998) L1340.
    [31] D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer,” Appl. Phys. Lett. 76 (2000) 49.
    [32] A. I. Vorobyova, V. A. Sokol, and E. A. Outkina, “SEM investigation of pillared microstructures formed by electrochemical anodization,” Appl. Phys. A 67 (1998) 487.
    [33] S. Z. Chu, K. Wada, S. Inoue, S. Todoroki, Y. K. Takahashi,and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition,” Chem. Mater. 14 (2002) 4595.
    [34] M. S. Sander, L. S. Tan, “Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates,” Adv. Mater. 13 (2003) 393.
    [35] O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, and M. S. Dresselhaus, “Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass,” Adv. Funct. Mater. 13 (2003) 631.
    [36] S. Z. Chu, K. Wada, S. Inoue, and S Todoroki, “Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate,” J. Electro. Soc. 149 (2002) B321.
    [37] A. Mozalev, A. Poznyak, I. Mozaleva, and A. W. Hassel, “The voltage-time behaviour for porous anodizing of aluminium in a fluoride-containing oxalic acid electrolyte,” Electrochem. Comm. 3 (2001) 299.
    [38] Metals Handbook, “Metallography and microstructures, ” American Society of Metal 9 (1985) 48.
    [39]P. A. Jacquet, Electrolytic polishing of metallic surface, 5 (1949) 48.
    [40] P. A. Jacquet, Electrolytic polishing of metallic surface, 2 (1950) 55.
    [41] P. V. Schigolev, “Electrolytic and chemical polishing of metal,” Freund, Holon, Israel, 1970.
    [42]V. V. Yuzhakov, H. C Chang, and A. E Miller, “Pattern formation during electropolishing,” Phys. Rev. B 56 (1997) 12608.
    [43] S. Bandyopadhyay , A. E. Miller, H. C. Chang, G. Banerjee, V. Yuzhakov, D. F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. Baugher, and M. Chandrasekhar, “Electrochemically assembled quasi-periodic quantum dot arrays,” Nanotechnology 7 (1996) 360.
    [44]J. P. O’Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. (London) A 317 (1970) 511
    [45] D. A. Vermilyea, “Stresses in anodic films,” J. Electrochem. Soc. 110 (1963) 345.
    [46] M. A. Heine and M. J. Pryor, “The distribution of A-C resistance in oxide films on aluminum,” J. Electrochem. Soc. 110 (1963) 1205.
    [47] A. J. Brock and G. C. Wood, “Studies on the structure of anodic oxide films on aluminim,”Electrochim. Acta 12 (1967) 395.
    [48] J. A. Davis, B. Domeij, J. P. S. Pringle, and F. Brown, “The migration of metal and oxygen during anodic film formation,” J. Electrochem. Soc. 112 (1965) 675.
    [49] T. P. Hoar, D. C. Mears, and G. P. Rothwell, “The relationships between anodic passivity, brightening and pitting,” Corros. Sci. 5 (1965) 279.
    [50] G. T. Roger, P. H. G. Draper, S. S. Wood, “Information on anodic oxide on valve metals : oxide growth at constant rate of voltage increase,” Electrochim. Acta 13(1968) 251..
    [51] A. F. Well, Structural inorganic chemistry, 2nd ed, Oxford : Clarendon Press (1952) 37.
    [52] G. E. Thompson and G. C. Wood, “Corrosion:Aqueous process and passive films,” Treatise on Material Science and Technology 23, Academic Press Inc. (London) LTD (1983), Chap. 5, p205.
    [53] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richarodson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminum,” Nature 272 (1978) 433.
    [54] F. Y. Li, L. Zhang, R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
    [55] J. A. Treverton, and N .C. Davies, “XPS studies of dc and ac anodic films on aluminum formed in surphuric acid,” Electrochim. Acta 25 (1980) 1571.
    [56] S. Tajima, “Luminescence, breakdown and colouring of anodic oxide film on aluminum,” Electrochim. Acta 22 (1977) 995.
    [57] K. Shimizu, G. E. Thompson, and G. C. Wood, “Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides” Electrochim. Acta 27 (1982) 245.
    [58] K. Shimizu, G. E. Thompson, and G. C. Wood, “Cellular growth of highly ordered porous anodic films on aluminum” Thin Solid Films 92 (1982) 231..
    [59] G. E. Thompson, and G. C Wood, “Porous anodic film formation on aluminum,” Nature 290 (1981) 230.
    [60] H. Masuda, and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys. 35 (1996) L126.
    [61] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T Tamamura , “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13 (2001) 189.
    [62] J. P. O’Sullivan, and G. C. Wood, “The anodizing of aluminum in sulphate solutions,” Electrochim. Acta 15 (1970) 1865.
    [63] L. Ba, and W. S. Li, “Influence of anodizing conditions on the ordered pore formation in anodic alumina,” J. Phys. D 33 (2000) 2527.
    [64] T. P. Hoar and J. Yahalom, “The Initialtion of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions,” J. Electrochem. Soc. 110 (1963) 614.
    [65] S. Wernick, R. Pinner, and P. G. Sheasby, Surface Treatment Finishing of Aluminium and Its alloys, 2nd ed. (Finishing Publication, Teddington, Middlesex, UK, 1987), Vol. 1, Chap. 6, P289.
    [66] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, ”Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770.
    [67] G. Patermarakis, and N. Papandreadis, “Study on the kinetics of growth of porous anodic Al2O3 films on Al metal,” Electrochim. Acta 38 (1993) 2351.
    [68] J. C. Neison, and R. A. Oriani, “Stress generation during anodic oxidation of titanium and aluminum,” Corros. Sci. 34 (1993) 307.
    [69] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, “Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum,” Jpn. J. Appl. Phys., Part 1 36 (1997) 7791.
    [70] S. Wernick, R. Pinner, and P.G. Sheasby, Anodizing of Aluminium: General Notes and Theory, 2nd ed. (Finishing Publications Ltd., Teddington, Middlesex, UK, 1987), Vol. 1, Chap. 6, P. 289.
    [71] V. P. Parakhutik, and V. I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminum,” J. Phys. D 25 (1992) 1528.
    [72] E. Palibroda, “Aluminum porous oxide growth on the rate determining step,” Electrochim. Acta. 40 (1995) 1051.
    [73] J. Yahalon, and T. P. Hoar, “Pore structure in anodic Al2O3 films,” Electrochim. Acta 15 (1970) 877.
    [74] D. A. Vermilyea, “The crystallization of anodic tantalum oxide films in the presence of a strong electric field,” J. Electro. Soc. 102 (1955) 207.
    [75] N. Sato, “A theory for breakdown of anodic oxide films on metals,” Electrochim. Acta 16 (1971) 1683.
    [76] J. Zahavi, and M. Metzger, “Electro-microscopes study of breakdown and repair of anodic films on aluminum,” J. Electro. Soc. 119 (1972) 1479.
    [77] J. Yahalom, and J Zahavi, “Experimental evaluation of some electrolytic breakdown hypothesis,” Electrochim. Acta 16 (1971) 603.
    [78] L. Zhang, H. S. Cho, F. Li, R. M. Metzger, and W. D. Doyle, “Cellular growth of highly ordered porous anodic films on aluminium,” J. Mater. Sci Lett. 17 (1998) 291.
    [79] M. S. Hunter, and P. Fowle, “Factors affecting the formation of anodic oxide coating,” J. Electro. Soc. 101 (1954) 514.
    [80] J. W. Diggle, T. C. Downie, and C. W. Goulding, “Dissolution of porous oxide films on aluminum,” Electro. Acta 15 (1970) 1079.
    [81] G. E. Thompson, and G. C. Wood, “Effect of alternating voltage on aluminum electrodes in hydrochloric-acid,” Corros. Sci. 18 (1978) 721.
    [82]Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. M. Bao, “Anodic alumina template on Au/Si substrate and preparation of CdS nanowires,” Solid State Commun. 123 (2002) 279.
    [83] G. E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S. H. Han, and G. C. Wood, Philos. Mag. A 55 (1987) 651.
    [84] G. Patermarakis, K. Moussoutzanis, “Electochemical kinetics study on the growth of porous anodic oxide films on aluminum,” Electrochim. Acta 40 (1995) 699.
    [85] K. Shimizu, K. Kobayashi, P. Skeldon, G. E. Thompson, and G. C. Wood, “An atomic force microscopy study of the corrosion and filming behaviour of aluminum,” Corros. Sci. 3 (1997) 701.
    [86] X. G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic/Plenum Publishers, New York, (2001), p.48.
    [87] V. Lehmann, Electrochemistry of silicon (Wiley-Vch Verlag GmbH, Morlenbach, Germany, (2002), p.79.
    [88] D. J. Blackwood, and L. M Peter, “Stability and open circuit breakdown of the passive oxide film on titanium,” Electrochim. Acta 33 (1988) 1143.
    [89] C. P. De Pauli, M. C. Giordano. J. O. Zerbino, “Ellipsonetric response of titanium electrodes in sulphate acid solutions under different potential perturbations,” Electrochim. Acta 28 (1983) 1781-1788.
    [90] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Houston, 1974), p250.
    [91] V. Lehmann, “On the origin of electrochemical oscillations at silicon electrodes,” J. Electro. Soc. 143 (1996) 1313.
    [92] T. Ohgai, X. Hoffer, A. Fabian, L. Gravier, and J. P. Ansermet, “Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium,” J. Mater. Chem. 13 (2003) 2530.
    [93] M. M. Lohrengel, “Thin anodic oxide layers on aluminum and other valve metal: high-field regime,” Mater. Sci. Eng. R. 6 (1993) 243.
    [94] G. Oskam, J. G. Long, A. Natarajan, and P. C. Searson, “Electrochemical deposition of metals onto silicon,” J. Phy. D 31 (1998) 1927.
    [95] E. Budevski, G. Staikov, W. J. Lorenz, “Electrochemical phase formation and growth; Weinheim-Vch: Weinheim, 1996; Chapter3.”
    [96] T. Mingliang, W. Jinguo, K. James, T. E. Mallouk, and M. H. W. Chan, “Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism,” Nano Lett. 3 (2003) 919.
    [97] M. Paunovic, m. Schlesinger, Fundamental of Electrochemical Deposition; Wiely: New York, 1998; P 108.

    下載圖示 校內:立即公開
    校外:2005-07-15公開
    QR CODE