| 研究生: |
陳芷筠 Chen, Chih-Yun |
|---|---|
| 論文名稱: |
用緊湊閃爍體陣列探測器測量不同高度的宇宙射線 Measuring Cosmic Rays at Different Altitude Ranges with Compact Scintillator Array Detector |
| 指導教授: |
楊毅
Yang, Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | ComSAD 、cosmic ray 、scintillator 、SiPM |
| 外文關鍵詞: | ComSAD, cosmic ray, scintillator, SiPM |
| 相關次數: | 點閱:139 下載:49 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過量測宇宙射線,我們可以對於這個宇宙有更多的了解。目前在地表以及衛星軌道上已經有許多正在進行的宇宙射線實驗與量測,但對於從探空氣球到低地軌道的高度仍然非常缺乏宇宙射線的量測與數據。因此,我們開發能進行探空火箭任務的閃爍體以及SiPM陣列的小型宇宙射線探測器-緊湊閃爍體陣列探測器(Compact Scintillator Array Detector, ComSAD)。
ComSAD是設計來量測30公里至200公里的宇宙射線資料,並且為未來的立方衛星計畫奠定工程基礎。為了能量測更多的宇宙射線資料,我們利用ComSAD的便攜性及高適應性,並與漢翔航空公司合作,利用他們的ASTRA飛機進行0-10 km 高度的量測。因此,我們為ComSAD設計了能獨立供電、存取數據並記錄即時位置的酬載,並安裝此酬載於ASTRA飛機上進行量測。在這篇論文中,我會展示此酬載的設計以及未來的立方衛星計畫的發展。
Measuring the properties of cosmic rays provides us lots of valuable information of understanding our Universe. There are many experiments dedicated for measuring cosmic rays on Earth or in space, but there is a large gap in altitude between the balloon and low Earth orbit satellite missions. Hence, we developed a small cosmic ray detector using scintillators and SiPMs technology, so called Compact Scintillator Array Detector (ComSAD), for sounding rocket mission.
ComSAD is designed to measure the cosmic ray to cover the altitude gap from 30 km to 200 km and to build the foundation of the future CubeSat missions. Small size of ComSAD makes it portable and flexible to measure cosmic rays. To collect more data and understand the performance of ComSAD, we collaborate with Aerospace Industrial Development Corp. (AIDC) using their flight, ASTRA, which can fly up to 45000 feet to measure cosmic rays using ComSAD. Therefore, we modified the payload with ComSAD including the new data acquisition system, power supply unit, and GPS system. In this thesis, I will demonstrate the design, construction, and performance of ComSAD on ASTRA and the future development for CubeSat missions.
[1] M. e. a. Aguilar, “Precision measurement of the proton flux in primary cosmic rays from rigidity 1 gv to 1.8 tv with the alpha magnetic spectrometer on the international space station,” Phys. Rev. Lett., vol. 114, p. 171103, Apr 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.114.171103
[2] C. P. S. The CubeSat Program, “Cubesat design specification rev. 13.”
[3] “漢翔航空工業股份有限公司 aerospace industrial development corporation,” https://www.aidc.com.tw/tw/.
[4] V. F. Hess, “Uber beobachtungen der durchdringenden strahlung bei sieben freiballonfahrten,” Phys. Zeits., vol. 13, pp. 1084–1091, 1912.
[5] T. Wulf et al., “Observations on the radiation of high penetration power on the eiffel tower,” Physikalische Zeitschrift, vol. 11, p. 811, 1910.
[6] M. Tanabashi et al., “29.1. primary spectra.”
[7] L. Drury, “An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas,” Reports on Progress in Physics, vol. 46, pp. 973–1027, 1983.
[8] J. A. Aguilar, “Particle astrophysics lecture 3,” https://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html.
[9] “商務航空再添新生力軍於漢翔首度亮相,” 2013, https://www.aidc.com.tw/tw/news/124.
[10] L. Elliott, B. Holland, A. Kubiak, and Z. Spragg, “Ae 2001-introduction to spacecraft design: Final report near-space muon flux detection and analysis,” 2017.
[11] P. Shukla and S. Sankrith, “Energy and angular distributions of atmospheric muons at the earth,” arXiv: High Energy Physics - Phenomenology, 2016.
[12] A. J. et al., “Grapes-3 experimental system,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 958, p. 162099, 2020, proceedings of the Vienna Conference on Instrumentation 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168900219305236
[13] G. Di Sciascio, “The lhaaso experiment: From gamma-ray astronomy to cosmic rays,” Nuclear and Particle Physics Proceedings, vol. 279-281, pp. 166–173, 2016, proceedings of the 9th Cosmic Ray International Seminar. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S240560141630205X
[14] L. Collaboration*†, Z. Cao, F. Aharonian, Q. An, Axikegu, L. Bai, Y. Bai, Y. Bao, D. Bastieri, X. Bi et al., “Peta–electron volt gamma-ray emission from the crab nebula,” Science, vol. 373, no. 6553, pp. 425–430, 2021.
[15] M. e. a. Aguilar, “First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 gev,” Phys. Rev. Lett., vol. 110, p. 141102, Apr 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.110.141102
[16] D. Fick and D. Hoffmann, “Werner kolhörster (1887–1945): The german pioneer of cosmic ray physics,” Astroparticle Physics, vol. 53, pp. 50–54, 2014, centenary of cosmic ray discovery. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927650513001497
[17] 王莆凱, “開發在探空火箭或立方衛星任務中用於測量宇宙射線的緊湊閃爍體陣列探測器,” 07 2018. [Online]. Available: http://ir.lib.ncku.edu.tw/handle/987654321/182841
[18] S. C. Di Lorenzo, S. Callier, J. Fleury, F. Dulucq, C. De la Taille, G. M. Chassard, L. Raux, and N. SeguinMoreau, “Spiroc: design and performances of a dedicated very front-end electronics for an ilc analog hadronic calorimeter (ahcal) prototype with sipm read-out,” Journal of Instrumentation, vol. 8, no. 01, p.C01027, 2013.
[19] S. A. et al., “Geant4—a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168900203013688
[20] “Once upon a time in a thunderstorm,” 2018, https://phys.org/news/2018-04-thunderstorm.html.
[21] P. D’Avanzo, “Short gamma-ray bursts: A review,” Journal of High Energy Astrophysics, vol. 7, pp. 73–80, 2015, swift 10 Years of Discovery, a novel approach to Time Domain Astronomy. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214404815000415
[22] N. Tanvir, A. Levan, A. Fruchter, J. Hjorth, R. Hounsell, K. Wiersema, and R. Tunnicliffe, “A`kilonova' associated with the short-duration γ-ray burst grb 130603b,” Nature, vol. 500, no. 7464, pp. 547–549, 2013.
[23] W. Xu, “Monte carlo simulation of terrestrial gamma-ray flashes produced by stepping lightning leaders,” 2015.
[24] E. Stadnichuk, E. Svechnikova, A. Nozik, D. Zemlianskaya, T. Khamitov, M. Zelenyy, and M. Dolgonosov, “Relativistic runaway electron avalanches within complex thunderstorm electric field structures,” arXiv preprint arXiv:2105.02818, 2021.
[25] S. T. Alnussirat, H. J. Christian, G. J. Fishman, J. Burchfield, and M. L. Cherry, “Simultaneous spacebased observations of terrestrial gamma-ray flashes and lightning optical emissions: Investigation of the terrestrial gamma-ray flash production mechanisms,” Physical Review D, vol. 100, no. 8, p. 083018, 2019.
[26] T. Neubert, N. Østgaard, V. Reglero, O. Chanrion, M. Heumesser, K. Dimitriadou, F. Christiansen, C. Budtz-Jørgensen, I. Kuvvetli, I. L. Rasmussen, A. Mezentsev, M. Marisaldi, K. Ullaland, G. Genov, S. Yang, P. Kochkin, J. Navarro-Gonzalez, P. H. Connell, and C. J. Eyles, “A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning,” Science, vol. 367, no. 6474, pp. 183–186, 2020. [Online]. Available: https://science.sciencemag.org/content/367/6474/183