| 研究生: |
葉力瑄 Yeh, Li-Hsuan |
|---|---|
| 論文名稱: |
含polypeptides接枝型共聚物之合成與其應用之研究 Synthesis of graft polypeptides copolymer and its application |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 血液相容性 、接枝型共聚物 、聚胜肽 、巨單體 、甲基丙烯酸甲酯 |
| 外文關鍵詞: | graft copolymer, polypeptide, macromonomer, MMA, blood compatibility |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚胜肽是一種具有結構類似於蛋白質螺旋狀的生物相容性材料,由於其可於製備時導入其它種高分子結構,擴大其應用範圍,使得聚胜肽成為近年來極受生醫界矚目的仿生材料。本研究以合成接枝型共聚物的方式將生物相容性佳的聚胜肽導入聚甲基丙烯酸甲酯(MMA)中,製得兼具高強度結構與高生物相容性的生醫材料。
本研究首先將自行合成之α-amino acid N-carboxyanhydrides (NCA)單體以一級胺起始開環聚合反應,藉由單體與起始劑比例的控制,合成出不同聚合程度的poly(Z-L-lysine) (DP=7-21);接著在其尾端接上Glycidyl methacrylate (GMA),使其成為尾端帶有雙鍵的巨單體(macromonomer)。最後再以接枝聚合的方式與MMA進行共聚反應生成含有不同組成比例的接枝型共聚合物PMMA-graft-poly(Z-L-lysine),(其中poly(Z-L-lysine)含量由0%-100%)。本實驗以MALDI TOF鑑定確認PMMA-graft-poly(Z-L-lysine)的結構。另由FT-IR結果觀察,當側鏈長度相同,MMA含量愈高,其β摺板結構愈穩定;但若是MMA含量相同,側鏈長度愈長,其α螺旋結構相對含量愈高。最後,再以血漿再鈣化測試與血小板吸附實驗觀察此接枝型共聚合物在血液中對其的影響,結果顯示poly(Z-L-lysine)含量愈高,血小板吸附活化量愈少,血漿再鈣化時間愈短。
Polypeptide (poly(L-lysine) derivatives) is a kinds of biomimetic material. Because it can be introduced into polymer structure, thus, polypeptides are highly interested and have been developed in pharmaceutical and biomedical sciences in recent years. In this study, the poly(L-lysine) was synthesized and introduced into the poly(methyl methacrylate) by using grafting polymerization to prepare a high performance biomaterial.
Poly(Z-L-lysine) was firstly prepared by α-amino acid N-carboxyanhydrides (NCAs) with primary amine via the nucleophilic ring-opening polymerization. A series of poly(Z-L-lysine)(DP=7-21) could be obtained when the different amount of primary amine was used. Then, poly(Z-L-lysine) was further reacted with glycidyl methacrylate (GMA) to manufacture the poly(Z-L-lysine)-GMA macromonomer. Finally, the grafted copolymer was synthesized by using the poly(Z-L-lysine)-GMA macromonomer and MMA via grafting through method. MALDI TOF spectroscopy was used to identified the repeating units and chain end group of poly(Z-L-lysine) and macromonomer. FT-IR spectra show that the β-sheet structure is becoming more stable when MMA monomer ratio are increased. However, α-helix structure would be appeared when MMA monomer ratio was fixed. Moreover, the result of the plasma recalcification and plasma adhesion experiment shows that the plasma recalcification time were longer and the plasma adhere were fewer when more poly(Z-L-lysine) was existed.
[1] C. Deng, X. Chen, J. Sun, T. Lu, W. Wang, X. Jing, 2006, Wiley InterScience, 2006, 3218–3230.
[2] 潘勁屹,國立雲林科技大學化學工程學系,聚己內酯表面活化與表面奈米化對細胞生長之研究。
[3] 郭芝瑩,國立清華大學化學工程學系,聚葵二酸酐-聚丙二醇共聚物合成及在生醫材料上之應用。
[4] J. Grodzinski, J. React. Funct. Polym., 39 (1999) 99–138.
[5] 闕山璋,“骨科植入物生醫材料及器材”,科儀新知, 第十三卷, (1991) 第一期。
[6] J. Kline, Handbook of biomedical engineering, Academic press, Inc., 1988.
[7] M. Aebi, P. Regazzoni, Bone trans-plantation, Spring Vrelag, Berlin Heidelberg, 1989.
[8] A. Lazaris, Science, 295 (2002) 472–476.
[9] Life Sciences News Brief”,(2004) 4, 41.
[10] F. Vollrath., D.P. Knight, Nature, 410 (2001) 541–548.
[11] 江秉倫, 林建邦, ”生物學發展百年史 ”。
[12] J.J. Grodzinski, Reactive & Functional Polymers 39 (1999).
[13] 丸山工作著,何士慶譯 ”生化學入門”,科技圖書股份有限公司。
[14] 張金中, 王中林, 劉俊, 陳少傳, 劉剛玉著, 曹茂盛, 曹傳寶譯 ”自組裝納米結構”, 化學工業出版社。
[15] J. Babin, J.R. Hernandez, S. Lecommandoux, H.A. Klok, M.F. Achard, Faraday Discuss., 128 (2005) 179–192.
[16] H.R. Kricheldorf, Angew. Chem. Int. Ed., 45 (2006) 5752–5784.
[17] H.R. Kricheldorf, Spring Verlag, New York, 1987.
[18] H.R. Kricheldorf, M. Sell, G.J. Schwarz, Macromol. Sci. Chem., 45 (2008) 425–430.
[19] M. Frankel and E. Katchalski, Scientific Papers Presented to C. Weizmann, Y. Hirschberg, Ed., Palestine Chemist Organization, Jerusalem , 24 (1944).
[20] E. Katchalski, I. Grossfeld, M. Frankel, J. Am. Chem. Soc., 70 (1948) 2094.
[21] C. Deng, X. Chen, J.Sun, T.Lu, W. Wang, X. Jing, Wiley InterScience, 2006, 3218–3230.
[22] Journal of Mechanical Design,129 ( 2007) 1130–1136.
[23] H.R. Kricheldorf, D. Muller, J. Stulz, Makromol. Chem., 184 (1983) 1407–1421.
[24] 王立禾,蛋白質構造與功能,(1977) 6–14, 復漢出版社。
[25] K. Matyjaszewski, Macromol. Symp., 195 (2003) 25–31.
[26] L.A. Haines, K. Rajagopal, B. Ozbas, D.A. Salick, J. Am. Chem. Soc., 127 (2005) 17025–17029.
[27] M. Schmidt, M.W. Neiser, J. Okuda, Macromolecules, 36 (2003) 5437–5439.
[28] S. Asayama, A. Maruyama, T. Akaike, Bio. Conjugate Chem., 10 (1999) 246–253.
[29] F. Sanda, G. Gao, T. Masuda, Macromol. Biosci., 4 (2004) 570–574.
[30] Y. Fan, G. Chen, J. Tanaka, T. Tateishi, Biomacromolecules, 6 (2005) 3051–3056.
[31] F. Sanda, G. Gao, T. Masuda, Biomacromolecules, 7 (2006) 590–596.
[32] H.A. Klok, J.R. Hernandez, Macromolecules, 35(2002) 8718—8723.
[33] B. Nottelet, A.E. Ghzaoui, J. Coudane, Biomacromolecules, 8 (2007) 2594–2601.
[34] M.W. Neiser, J. Okuda, M. Schmidt, Macromolecules, 36 (2003) 5437–5439.
[35] 何敏夫,血液學, 合記出版社, 1993。
[36] 王文憲,人體生理學, 合記出版社, 1994。
[37] S. Sagnella, J. Kwok, R.E. Marchant, K.K. Marchant, J. Biomed. Mater. Res., 57 (2001) 419–431.
[38] T.H. Groth, K. Klosz, E.J. Campbell, R.C. New, B. Hall, H. George, J. Biomater. Sci. polymer Edn., 6 (1994) 497–510.
[39] S. Sagnella, K.M. Ngam, Colloids and Surfaces B: Biointerfaces, 42 (2005) 147–155.
[40] K. Ishihara, R. Aragaki , T. Ueda , A. Watanabe , N. Nakabayashi, J. Biomed. Mater. Res., 24 (1990) 1069–1077.
[41] K. Ishihara, H. Fujita , T. Yoneyama , Y. Iwasaki . J. Biomater. Sci. Polym. Ed., 11 (2000) 1183–1195.
[42] E. Merill, E. Salzman, ASAIO J., 6 (1983) 60–65.
[43] S. Jeon, J. Lee, J. Andrade, D. Genne, J. Colloid Interface Sci., 142 (1991) 149–158.
[44] S. Jeon, J. Andrade, J. Colloid Interface Sci., 142 (1991) 159–66.
[45] K. Park, H. Shim, M. Dewanjee, N. Eigler, J Biomater. Sci. Polym. Ed., 11 (2000) 1121–1134.
[46] S. Srinivasan, P. Sawyer, Marcel Dekker, New York, 1971, pp. 51–66.
[47] D.S. Poche, M.J. Moore, J.L. Bowles, Synthetic Communications, 29 (1999) 843–854.