| 研究生: |
吳英豪 Wu, Ying-Hao |
|---|---|
| 論文名稱: |
具渦流產生器之高效率鰭管式熱交換器之研發 The study of high efficiency finned-tube heat exchangers with vortex generators |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 渦流產生器 、熱傳增強 、板鰭式熱交換器 |
| 外文關鍵詞: | vortex generator, heat transfer enhancement, plate-finned tube heat exchangers |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以理論分析及實驗探討擴散排列之波浪形渦流產生器(vortex generator)之鰭管式熱交換器的熱增強現象,是利用裝置於鰭管式熱交換器鰭片上之凸起物,使空氣流經渦流產生器時產生縱向渦漩以增進熱傳的裝置。理論方面以三維延伸κ-ε (extended κ-ε model)紊流模式,探討在不同正向流速下及不同渦流產生器之展開角度,對熱傳(Colburn因子,j)及阻力(阻力係數f)的影響。實驗部分以水洞做流場觀測,相互印證所採用的物理模式及數值方法的準確性。
從理論分析結果得知,鰭管式熱交換器使用擴散排列之波浪形渦流產生器在熱傳方面,VG1(展開角度為30度)j值最大可增加達7.8%,VG2(展開角度為45度)可增加20.2%,而VG3(展開角度為60度) 可增加25.7%;在阻力方面,VG1之f值最大可增加4.3%,VG2可增加14.7%,VG3可增加26.3%;而基於同樣熱傳量需求和風扇功率的條件下,整體熱交換面積縮減率以VG2的效果最好,可達到24.0%~12.0%。
從流場觀測結果得知,渦流產生器一方面可使流体導入圓管後方將迴流區熱量帶出,而且加速流體衝擊下一排圓管,提高下一排圓管前端之熱傳效率。另一方面可使流體衝擊渦流產生器後,在渦流產生器下游形成縱向渦漩,使下游區域混合增加。在壓降方面,數值結果與實驗比對平均稍低估約15~25%。
Experimental and numerical analyses were carried out to study the heat transfer and flow in the plate finned-tube heat exchangers with inclined block shape vortex generators mounted behind the tubes. The study was performed for a variety of span angle over a range of flow conditions. Experiments were examined by a water tunnel system to visualize local flow structure. In addition, numerical simulation was performed by a 3-D turbulence analysis of the heat transfer and fluid flow. The results indicated that the proposed heat transfer enhancement technique enable to generate longitudinal vortices and to improve the heat transfer performance in the wake regions. These effects were intensified as the span angle is increased. Furthermore, the case of 45°span angle provides the best heat transfer augmentation. A reduction in fin area of 24% may be obtained if vortex generators embedded fins are used in place of plain fins.
1. ESDU 93024, Engineering Science Data Unit,“Vortex Generators for Control of Shock-Induced Separation Part 1: Introduction and Aerodynamics, 1993.
2. Jacobi A. M., and Shah R. K.,“Heat Transfer Surfaces Enhancement through the Use of Longitudinal Vortices: A Review of Recent Progress”, Experimental Thermal and Fluid Science, Vol.11, pp.295-309, 1995.
3. Fiebig M., “Vortices Generators and Heat Transfer”, Trans. IchemE, Vol.76, Part A, pp.108-123, 1998.
4. Jang, J. Y., Wu, M. C. and Chang, W. J., "Numerical and Experimental Studies of Tree-Dimensional Plate-Fin and Tube Heat Exchangers", International Journal of Heat and Mass Transfer, Vol. 39, No. 14, PP. 3057-3066, 1996.
5. Jang, J. Y. and Chen, L. K.,“Numerical Analysis of Heat Transfer and Fluid-Flow in a Three-Dimensional Wavy-Fin and Tube Heat Exchanger”, International Journal of Heat and Mass Transfer, Vol. 40, No. 16, PP. 3981-3990, 1997.
6. Wang, C. C., Jang, J. Y. and Chiou, N. F.,“A Heat Transfer and Friction Corrlelation for Wavy Fin and Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, Vol. 42, No. 10, PP. 1919-1924, 1999.
7. Wang, C. C, Jang, J. Y. and Chiou, N. F“Effects of Waffle Height on the Air-Side Performance of wavy Fin-and-Tube Heat Exchangers”, Heat Transfer Engineering, Vol.20, No. 3, PP. 45-56, 1999.
8. Webb, P. L. and Trauger, P.,“Flow structure in the louvered fin heat exchanger geometry”, Experimental Thermal and Fluid Science, Vol. 4, PP.205-217, 1991.
9. Suga, K., Aoki, H. and Shinagawa, T.,“Numerical Analysis on Two-Dimensional Flow and Heat Transfer of Louvered Fins using Overlaid Grids”, JSME International Journal Series II, Vol.33, No.1 pp.122-129, 1990.
10. Suga, K. and Aoki, H.,“Numerical study on heat transfer and pressure drop in multilouvered fins”, ASME/JSME Thermal Engineering Proceedings, Vol.4, pp.361-368, 1991.
11. Atkinson, K. N., Drakulic , R., Heikal, M. R., and Cowell, T. A.,“Two-and three-dimensional numerical models of flow and heat transfer over louver fin arrays in compact heat exchangers”, International Journal of Heat and Mass Transfer , Vol. 41, PP. 4063-4080, 1998.
12. Wang, C. C. and Chang, Y. J.,“A generalized heat transfer correlation for louver fin geometry”, International Journal Heat Mass Transfer, Vol.40, No.3, PP. 533-544, 1997.
13. Wang, C. C., Chi, K. Y., and Chang, Y. J.,“ An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers”, International Journal of Heat Mass Transfer, Vol.41, PP. 817-822, 1998.
14. Hatada, T. and Senshu, T.,“Experimental study on heat transfer characteristic of convex louver fin for air conditioning heat exchangers”, ASME, paper 84-HT-74, 1984.
15. Bemisderfer, C. H.,“Heat Transfer: A contemporary analytical tool for developing improved heat transfer surfaces”, ASHRAE Trans. Part 1, PP.1157-1166, 1987.
16. Hadata, T., Ueda, H., Oouch, T. and Shimizu, T.,“Improved heat transfer performance of air coolers by strip fins controlling air flow distribution”, ASHRAE Trans., part 1, PP. 166-170, 1989.
17. Wang, C. C., Chen, P. Y. and Jang, J. Y.,“Heat transfer and friction characteristics of convex-louver fin-and-Tube heat exchangers”, Experimental Heat Transfer, Vol. 9, PP. 61-78, 1996.
18. Jang, J.Y. and Lin, C. N. and sHien, K. P.,“3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers”, accepted for publication in 2001 American Society of Heating, Refrigeration and Air-conditioning Engineers Annual Meeting, Cincinnati , OH, U.S. A., June 22-27, 2001.
19. Nakayama, W. and Xu, L. P.,“Enhanced fins for air-cooled heat exchangers-heat transfer and friction correlations, 1st ASME/JSME Thermal Engineering Joint Conference, Vol.1, pp. 495-502, 1983.
20. Wang, C. C., Tao, W. H. and Chang, C. J.,“An investigation of the airside performance of the slit fin-and-Tube heat exchangers”, International Journal of Refrigeration, Vol. 22, PP. 595-603, 1996.
21. Wang, C. C., and Du, Y. J.,“An experimental study of the airside performance of the superslit fin-and-Tube heat exchangers”, International Journal of Heat Mass Transfer, Vol. 43, PP. 4475-4482, 2000.
22. Edwards F. J., and Alker G. J. R.,“The Improvement of Forced Convection Surface Heat Transfer Using Surfaces Protrusions in the Form of (A) cubes and (B) Vortex Generators, Proc. 5th Int. Heat Transfer Conf., Tokyo, Vol.2, pp.244-248, 1974.
23. Tiggelbeck S., Mitra N. K., and Fiebig M.,“Experimental Investigation of Heat Transfer Enhancement and Flow Losses in a channel with Double Rows of Longitudinal Vortex Generators”, Int. J. Heat Mass Transfer, Vol.36, No.9, pp.2327-2337, 1993.
24. Tiggelbeck S., Mitra N. K., and Fiebig M.,“Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows”, ASME J. of Heat Transfer, Vol.116, pp.880-885, 1994.
25. Biswas, G., Mitra, N.K. and Fiebig, M.,“Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators”, International Journal of Heat and Mass Transfer, Vol. 37, pp. 283-291, 1994.
26. Fiebig M., Valencia A., and Mitra N. K.,“Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers”, Experimental Thermal and Fluid Science, Vol.7, pp.287-295, 1993.
27. Valencia A., Fiebig M., and N. K. Mitra,“Heat Transfer Enhancement by Longitudinal Vortices in a Fin-Tube Heat Exchanger Element with Flat Tubes., ASME J. of Heat Transfer, Vol.118, pp.209-211, 1996.
28. Fiebig, M., Valencia, A. and Mitra, N.K.,“Local Heat Transfer and Flow Losses in Fin-and-Tube Heat Exchangers with Vortex Generators: A Comparison of Round and Flat Tubes”, Experimental Thermal and Fluid Science, Vol. 8 pp. 35-45, 1994.
29. Chen, Y., Fiebig, M. and Mitra, N.K.,“Conjugate Heat Transfer of a Finned Tube with a Punched Longitudinal Vortex Generator in Form of a Delta Winglet-Parametric Investigations of the Winglet”, International Journal of Heat and Mass Transfer, Vol. 41, pp. 3961-3978, 1998.
30. Chen, Y., Fiebig, M. and Mitra, N.K.,“Heat Transfer Enhancement of a Finned Tube with Punched Longitudinal Vortex Generator In-Line”, International Journal of Heat and Mass Transfer, Vol. 41, pp. 4151-4166, 1998.
31. Chen, Y., Fiebig, M. and Mitra, N.K.,“Heat Transfer Enhancement of Finned Tube with Staggered Punched Longitudinal Vortex Generator”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 417-435, 2000.
32. Wang, C.C., Lo, J., Lin, Y.T. and Liu, M.S.,“Flow Visualization of Wavy-Type Vortex Generator Having Inline Fin-Tube Arrangement”, International Journal of Heat and Mass Transfer, Vol. 45, pp.1933-1944, 2001.
33. Lin, C.N. and Jang, J.Y.,“Conjugate Heat Transfer and Fluid Flow Analysis in Fin-Tube Heat Exchangers with Wave-Type Vortex Generators”, Journal of Enhanced Heat Transfer, Vol. 9, pp.123-136, 2002
34. Launder, B. E. and Spalding, A. D., Mathematical Models of Turbulence, pp. 90-100, Academic, London, 1972.
35. Chen, Y. S., Kim, S. W., Computation of Turbulent Flows Using an Extended Turbulence Closure Model, NASA CR-179204, Oct, 1987.
36. Wang, T. S., Chen, Y. S., Unified Navier-Stokes flowfield and performance analysis of liquid rocket engines, AIAA Journal, Vol. 9, No. 5, pp. 678-685, 1993.
37. Liakopoulos, A., Explicit Representations of the Complete Velocity Profile in a Turbulent Boundary Layer, AIAA Journal, Vol. 22, pp. 844-846, 1984.
38. Webb, R. L., Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc, 1994.
39. UNIC V.3.1, UNIC General Purpose CFD Design Tool, Engineering Sciences, Inc. Alabama, US, 2003.
40. CFDS-FLOW3D, Computational Fluid Dynamics Services-FLOW3D, AEA Technology, United Kingdom, 2003.
41. CFDRC, Computational Fluid Dynamics Research Corporation, Cummings Research Park, 2003.
42. STAR CD V.3.15A, Simulation of Turbulent Flow in Arbitrary Regions, Computational Dynamics Limited, UK, 2003.
43. PHOENICS, Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series, Concentration、Heat and Momentum Limited (CHAM) , London, United Kingdom, 2003.
44. FIDAP 7.0, Fluid Dynamics Analysis Package, Fluid Dynamic International (FDI),IL, U.S.A., 2003.
45. CFDS-ASTEC, Computational Fluid Dynamics Services-ASTEC, AEA Technology, United Kingdom, 2003.
46. Thompson, J. F., Thames, F. C. and Mastin, C.W., Automatic Numerical Generation of Boby-Fitted Curvilinear Coordinate System for Fields Containing any Number of Arbitrary Two-Dimensional Bodies, Journal of Computational Physics, Vol. 15, pp. 299-310, 1974.
47. Thompson, J. F., Warsi, Z. U. A. and Mastin, C.W., Numerical Grid Generation Foundations and Applications, North Holland, 1985.