| 研究生: |
曾渼檍 Zeng, Mei-Yi |
|---|---|
| 論文名稱: |
培養軟骨細胞之研究 Study of Cultivating Chondrocytes |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping, |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 培養軟骨細胞 、細胞原代培養 、單層細胞培養 |
| 外文關鍵詞: | cultivate chondrocyte, primary culture, monolayer culture |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在CMRT相關的研究當中,透過動物實驗和組織切片的觀察,鈣基陶瓷對硬骨組織有顯著的修復效果。本研究的目的是透過原代培養的方式,從動物身上取出軟骨組織,經過取出軟骨組織、消化軟骨組織、原代培養和傳代培養這些步驟穩定地培養軟骨細胞,在未來把軟骨細胞種植在鈣基陶瓷材料,期待能夠研究出修復關節軟骨的新方式。
本研究培養軟骨細胞的方式為單層培養,具有經濟效益、操作較為簡單、又可以培養大量的細胞等優點;然而目前已經證明軟骨細胞在單層培養之下進行幾次傳代培養之後,會失去軟骨細胞原本的表型,若是轉移到三維培養環境中就不會使軟骨細胞失去表型。因此在未來,期待能夠以體外培養的方式,把鈣基陶瓷作為三維結構的生物支架,同時進行軟骨細胞的原代培養,嘗試讓軟骨細胞生長在陶瓷支架,並且把種植軟骨細胞的陶瓷支架植入動物,觀察是否會比純陶瓷支架的植入有更好的修復成果。
In one of the researches in CMRT (Cana Materials Research Team) Lab, calcium-based ceramic has shown excellent effect in animal experiments. Therefore, in this study, we tried to cultivate the chondrocytes by monolayer culture through acquiring cartilage tissue, digesting cartilage tissue, primary culture, and subculture. According to our research, the chondrocytes were harvested from the rib cartilage of Sprague Dawley rats and New Zealand rabbits by primary culture. In the future, we would like to make an attempt to seed chondrocytes on the bioceramic scaffold and then implant the joint defect to understand the effect of repairing cartilage.
The advantages of cultivating chondrocytes by monolayer culture is ecomonical and easier. Moreover, we can gain a large number of chondrocytes by comparing other cell culture methods. Nevertheless, it has been proved that chondrocytes would lose their phenotype by monolayer culture after subculture for several times. When these chondrocytes were transferred into the three-dimensional culture, chondrocytes recovered their phenotype. Because of the property of chondrocytes, we could try to seed chondrocytes on the three-dimensional bioceramic scaffold and then expect that the bioceramic scaffold cultivating with chondrocytes will implant the animal in the future.
1. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., & De Crombrugghe, B. (1999). Sox9 is required for cartilage formation. Nature genetics, 22(1), 85-89.
2. Benya, P. D., & Shaffer, J. D. (1982). Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 30(1), 215-224.
3. Berg, V. (2008). Human articular chondrocytes express Chemerin receptor, ChemR23, which conveys inflammatory signalling. Universitetet i Tromsø,
4. Brittberg, M., Sjögren-Jansson, E., Thornemo, M., Faber, B., Tarkowski, A., Peterson, L., & Lindahl, A. (2005). Clonal growth of human articular cartilage and the functional role of the periosteum in chondrogenesis. Osteoarthritis and cartilage, 13(2), 146-153.
5. Bi, W., Huang, W., Whitworth, D. J., Deng, J. M., Zhang, Z., Behringer, R. R., & De Crombrugghe, B. (2001). Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proceedings of the National Academy of Sciences, 98(12), 6698-6703.
6. Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: structure, injuries and review of management. British medical bulletin, 87(1), 77-95.
7. Bueno, E. M., Bilgen, B., Carrier, R. L., & Barabino, G. A. (2004). Increased rate of chondrocyte aggregation in a wavy‐walled bioreactor. Biotechnology and bioengineering, 88(6), 767-777.
8. Chen, F., Frenkel, S., & Di, P. C. (1999). Repair of articular cartilage defects: part I. Basic Science of cartilage healing. American journal of orthopedics (Belle Mead, NJ), 28(1), 31-33.
9. Chen, H. C., Lee, H. P., Sung, M. L., Liao, C. J., & Hu, Y. C. (2004). A novel rotating‐shaft bioreactor for two‐phase cultivation of tissue‐engineered cartilage. Biotechnology progress, 20(6), 1802-1809.
10. Cui, D. (2014). 組織學圖譜功能及臨床面面觀 (徐淑媛, Trans.): 合記圖書出版社.
11. Deng, Y., Zhao, K., Zhang, X.-f., Hu, P., & Chen, G.-Q. (2002). Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials, 23(20), 4049-4056.
12. Ecke, A., Lutter, A.-H., Scholka, J., Hansch, A., Becker, R., & Anderer, U. (2019). Tissue specific differentiation of human chondrocytes depends on cell microenvironment and serum selection. Cells, 8(8), 934.
13. Einhorn, T. A. (1998). The cell and molecular biology of fracture healing. Clinical Orthopaedics and Related Research®, 355, S7-S21.
14. Freed, L., Grande, D., Lingbin, Z., Emmanual, J., Marquis, J., & Langer, R. (1994). Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. Journal of biomedical materials research, 28(8), 891-899.
15. Farnworth, L. (2000). Osteochondral defects of the knee. Orthopedics, 23(2), 146-157.
16. Goldring, M. B., Birkhead, J. R., Suen, L.-F., Yamin, R., Mizuno, S., Glowacki, J., . . . Apperley, J. F. (1994). Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. The Journal of clinical investigation, 94(6), 2307-2316.
17. Glowacki, J., Trepman, E., & Folkman, J. (1983). Cell shape and phenotypic expression in chondrocytes. Proceedings of the Society for Experimental Biology and Medicine, 172(1), 93-98.
18. Harrison, P., Ashton, I., Johnson, W., Turner, S., Richardson, J., & Ashton, B. (2000). The in vitro growth of human chondrocytes. Cell and Tissue Banking, 1(4), 255-260.
19. Hall, A. C. (2019). The Role of Chondrocyte Morphology and Volume in Controlling Phenotype—Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Current rheumatology reports, 21(8), 38.
20. Hirsch, M. S., & Svoboda, K. K. (1998). Establishment of a whole-chick sternum model that recapitulates normal cartilage development. Biotechniques, 24(4), 632-636.
21. Hu, D.-N., Yang, P.-Y., Ku, M.-C., Chu, C.-H., Lim, A. Y., & Hwang, M.-H. (2002). Isolation and cultivation of human articular chondrocytes. The Kaohsiung journal of medical sciences, 18(3), 113-120.
22. Izumi, T., Tominaga, T., Shida, J., Onishi, F., & Itoman, M. (2000). Chondrocyte transplantation for osteochondral defects with the use of suspension culture. Cell and Tissue Banking, 1(3), 207.
23. Ishizaki, Y., Burne, J. F., & Raff, M. C. (1994). Autocrine signals enable chondrocytes to survive in culture. The Journal of cell biology, 126(4), 1069-1077.
24. Kato, Y., Iwamoto, M., Koike, T., Suzuki, F., & Takano, Y. (1988). Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors. Proceedings of the National Academy of Sciences, 85(24), 9552-9556.
25. Klagsbrun, M. (1979). [50] Large-scale preparation of chondrocytes. In Methods in enzymology (Vol. 58, pp. 560-564): Elsevier.
26. Kuettner, K. E., Pauli, B. U., Gall, G., Memoli, V. A., & Schenk, R. K. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. The Journal of cell biology, 93(3), 743-750.
27. Kato, Y., Iwamoto, M., Koike, T., Suzuki, F., & Takano, Y. (1988). Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors. Proceedings of the National Academy of Sciences, 85(24), 9552-9556.
28. Lin, Z., Fitzgerald, J. B., Xu, J., Willers, C., Wood, D., Grodzinsky, A. J., & Zheng, M. H. (2008). Gene expression profiles of human chondrocytes during passaged monolayer cultivation. Journal of orthopaedic research, 26(9), 1230-1237.
29. Lin, Z., Willers, C., Xu, J., & Zheng, M.-H. (2006). The chondrocyte: biology and clinical application. Tissue engineering, 12(7), 1971-1984.
30. Liu, H., Lee, Y.-W., & Dean, M. (1998). Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1425(3), 505-515.
31. Matsumoto, T., Tsukazaki, T., Enomoto, H., Iwasaki, K., & Yamashita, S. (1994). Effects of interleukin-1 beta on insulin-like growth factor-I autocrine/paracrine axis in cultured rat articular chondrocytes. Annals of the rheumatic diseases, 53(2), 128-133.
32. Mandl, E., Jahr, H., Koevoet, J., Van Leeuwen, J., Weinans, H., Verhaar, J., & Van Osch, G. (2004). Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix biology, 23(4), 231-241.
33. Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. TRENDS in Biotechnology, 22(2), 80-86.
34. Nagase, H., & Kashiwagi, M. (2003). Aggrecanases and cartilage matrix degradation. Arthritis Res Ther, 5(2), 1-10.
35. Parkkinen, J. J., Lammi, M. J., Helminen, H. J., & Tammi, M. (1992). Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. Journal of orthopaedic research, 10(5), 610-620.
36. Plunkett, N., & O'Brien, F. J. (2011). Bioreactors in tissue engineering. Technology and Health Care, 19(1), 55-69.
37. Quinn, T. M., Grodzinsky, A. J., Hunziker, E. B., & Sandy, J. D. (1998). Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. Journal of orthopaedic research, 16(4), 490-499.
38. Seal, B., Otero, T., & Panitch, A. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 34(4-5), 147-230.
39. Shimomura, Y., Yoneda, T., & Suzuki, F. (1975). Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcified tissue research, 19(1), 179-187.
40. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The basic science of articular cartilage: structure, composition, and function. Sports health, 1(6), 461-468.
41. Teixeira, M. A., Amorim, M. T. P., & Felgueiras, H. P. (2020). Poly (Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 12(1), 7.
42. Temenoff, J. S., & Mikos, A. G. (2000). Tissue engineering for regeneration of articular cartilage. Biomaterials, 21(5), 431-440.
43. Thomas, L. (1956). Reversible collapse of rabbit ears after intravenous papain, and prevention of recovery by cortisone. Journal of Experimental Medicine, 104(2), 245-252.
44. Zhang, Z., McCaffery, J. M., Spencer, R. G., & Francomano, C. A. (2004). Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. Journal of anatomy, 205(3), 229-237.
45. 藍中翊. (2005). 關節軟骨細胞存活率與變形量關係之測量. (碩士). 國立中正大學,
46. 楊長彬. (2004). 以組織工程製備新生軟骨作為軟骨修復. (碩士). 台北醫學大學,
47. 楊佩玉、胡誕寧、古鳴洲、朱家宏、陳輝星、黃馨儀、黃明和. (2004). 人體關節軟骨細胞分離與培養. 秀傳醫學雜誌, 5(1-2), 61-65.
48. 簡千翔. (2006). 明膠與陶瓷複合式支架培養關節軟骨細胞的研究. (碩士). 國立清華大學,
49. 林文央. (2007). 中草藥應用於關節軟骨組織工程之研究. (碩士). 國立台灣大學,
50. 張乃仁. (2009). 製備聚乳酸/甘醇酸海綿支架結合明膠與透明質酸於工程軟骨. (碩士). 國立成功大學,
51. 張乃仁. (2012). 探討骨軟骨再生醫學:生物支架和物理治療之綜合影響. (博士). 國立成功大學,
52. 許元昱、李旺祚、郭文勵. (1985). 組織學: 合記圖書出版社.
校內:2025-08-31公開