簡易檢索 / 詳目顯示

研究生: 戴佑理
Tai, Yu-Lee
論文名稱: 鎳之奈米化及孔洞化在電化學儲能上之應用
Application of Porous and Nanosized Nickel in Electrochemical Energy Storage
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 63
中文關鍵詞: 管狀電極陣列氫氧化鎳電極鎳-磷無電鍍氫化鎳電極鎳/碳複合電極硝酸氧化處理模板合成
外文關鍵詞: Nickel hydroxide electrode, Oxidation with nitric acid, Nickel oxide electrode, Ni-P electroless deposition, Template synthesis, Ni/C composite electrode, Tubule electrode array
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分成兩個部份來探討鎳之電化學行為模式。第一部份為利用模板合成的方法,加上無電鍍的技術,製作出均一孔洞的鎳-磷管狀物質,探討熱處理對晶相與電化學行為之影響,此部份鎳之性質屬於的電池之行為模式。第二部份則是在碳纖維布上,利用化學含浸的方法,將鎳氧化物植入到碳的表面,並探討溫度對電化學的影響,此部份著重在鎳的電容行為模式探討。
    第一部份:以鎳為主的管狀陣列是利用聚碳酸酯為模板,並利用無電鍍的技術,並利用次磷酸鹽為還原劑沉積而得,管壁內徑大約180 nm,管壁厚度為20 nm,長度大約2 μm左右,電極陣列所曝露出的表面積為平板的8.8倍多,在測器上有良好的潛力。循環伏安圖中Ni(OH)2/NiOOH氧化還原對在KOH溶液中比平板高出40倍之多,可能是因為奈米化的結構所造成的影響。並可從氧化還原對中發現熱處理的效應增加了電極儲存的能量。本實驗則提供了鎳氫電池另一個高效能的選擇。
    第二部份:為了要增進活性碳的電容量,於是將碳的表面沉積上一層鎳氧化物。而NiO/NiOOH的可逆氧化還原反應,加強了碳的電容量。利用硝酸鎳為原使原料,經由熱處理來改變鎳的不同形態,氧化鎳增加了電容,金屬鎳則降低了電極的內阻。硝酸的前氧化處理則增進了鎳在碳表面的均勻分散性,並減少了鎳聚集的效應。電容經1 %鎳處理後可由141增加到204 F/g,增加率大約有45%之多,過多的鎳則會因阻塞了孔洞而使得電容減小。

    It is divided into two parts to discuss the electrochemical performance of Ni. Both capacitive and battery behavior will be discussed in the present work. The first one is the porosity of nickel-based electrode array. The second part is the nanoscale of the nickel oxide on carbon fiber.
    Nickel-based tubule electrode array was fabricated using electroless deposition with polycarbonate membrane serving as template. Hypophosphite was the reducing agent in Ni deposition, and electrodes made of Ni-P alloy were formed. The tubule has an internal diameter of ca. 180 nm, a wall thickness of ca. 20 nm, and a length of ca. 2 mm. The electrode array provided an exposed area ca. 8.8 times as large as that of a planar electrode, suggesting a potential application of the array in sensor devices. Cyclic voltammetric measurements in KOH showed that the electrochemical response from the Ni(OH)2/NiOOH redox reaction for the electrode arrays was more than 40 times larger than that for an planar electrode. The nanoscale structure of the tubule might be responsible for this magnification of the redox response. Heat treatment combined with overcharge oxidation of the electrode arrays was found to significantly improve the charge storage capacity resulting from the redox reaction. The present work has provided important concepts capable of improving the performance of a nickel hydroxide electrode for nickel metal hydride batteries.
    Impregnation of Ni on activated carbon fabric was conducted in an attempt to promote the capacitance of the carbon employed as electrodes in electrochemical capacitors using KOH as the electrolyte. With the addition of pseudocapacitance resulting from the NiO/NiOOH redox reaction, the enhancement of carbon capacitance, basically double-layer type, is expected. Ni(NO3)2 was the source of Ni in the impregnation and heat treatment on the impregnated carbons was required to decompose the nitrates. The heat treatment also caused formation of metallic Ni, thus leading to a decrease in electrode resistance. Oxidation of the carbon with HNO3 prior to Ni impregnation was found to improve Ni dispersion and thus to promote the capacitance. The present work has demonstrated that the capacitance of a carbon fabric electrode can be enhanced by 50% (from 141 to 204 F/g) through 1 wt% of Ni loading. However, the enhancement can be restricted by pore blockage due to a high extent of Ni loading.

    中文摘要 I Abstract II 誌謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 儲能材料簡介 1 1-1-1 電池簡介 1 1-1-2 超高電容器簡介 2 1-1-3電雙層電容與假電容 2 1-2 鎳材料簡介 3 1-2-1 鎳的基本性質 3 1-2-2 鎳的電化學特性 3 1-3 模板方法 4 1-3-1 模板合成方法介紹 4 1-3-2 無電鍍 5 1-4 碳在電容器上之應用 6 1-4-1 簡介 7 1-4-2 活性碳纖維布 7 1-4-3碳之氧官能基 7 第二章 理論說明與文獻整理 11 2-1 無電鍍原理與簡介 11 2-1-1 敏化 11 2-1-2 活化 11 2-1-3 無電鍍 11 2-2 電容器之簡介 12 2-2-1 電位 12 2-2-2 電容器 13 2-2-3 三極式和二極式電容器 13 2-3 電雙層的觀念與結構 14 2-3-1 電雙層原理 15 2-3-2 Helmholtz電雙層模型 15 2-3-3 Stern電雙層模型 16 2-3-4 電雙層結構 17 2-4 電化學測試方法 17 2-4-1 循環伏安法 17 2-4-2 電容器的定電流操作 18 2-5電極之改質方法 18 2-5-1 表面氧化處理 18 2-5-2 金屬氧化物的植入 19 2-6 BET吸附基本理論與D-R方程式 20 2-6-1 BET等溫吸附模式 20 2-6-2 D-R等溫吸附模式 21 2-7 X光繞基本理論 22 2-7-1 原子面間距 22 2-7-2 布拉格方程式 23 2-8 熱重量分析 23 第三章 實驗方法與設備 34 3-1 實驗用藥品與儀器 34 3-2 實驗方法 35 3-2-1 第一部份:鎳的電池行為探討 35 3-2-2 第二部份:鎳的電容行為探討 36 第四章 結果與討論 43 4-1 鎳之電池特性 43 4-1-1 鎳-磷電極物理特性 43 4-1-2 鎳-磷電極電化學行為 44 4-2 鎳之電容特性 46 4-2-1 鎳/碳電極物理特性 46 4-2-2 鎳/碳電極電化學行為 47 第四章 結論 62 參考文獻 64 作者自述 67

    1.Kotz, R.; Carlen, M. Electrochemica Acta 2000 45, 2483.
    2.費定國、李桐進, “鋰電池專題報導”, 能源、資源與環境, 3 卷, 1 期, P10.19, 1990.
    3.梁桂肇, “小型二次電池的充電特性比較”, 小型二次電池市場與技術專輯, P9-18, 1996.
    4.李桐進, “鎳氫化物電池之特性、應用及市場”, 小型二次電池市場與技術專輯, P108.111, 1996.
    5.費定國、王國賢, “呼之欲出—鎳氫化物電池產業”, 小型二次電池市場與技術專輯, P104.107, 1996.
    6.李敏昌, “日本SONY 鋰離子二次電池研發歷史”, 小型二次電池市場與技術專輯, P40.48, 1996.
    7.Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers: New York, (1999).
    8.Frackowiak, E.; Béguin, F. Carbon 2001, 39, 937.
    9.Kim, H. S.; Itoh, T.; Nishizawa, M.; Mohamedi M.; Umeda, M.; Uchida, I. International J. Hydrogen Energy 2002, 27, 295.
    10.Natarajan, C.; Matsumoto, H.; Nogami, G.. J. Electrochem. Soc., 1997, 144, 121.
    11.Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.
    12.Srinivasan, V.; Weidner, J. W.; J. Electrochem. Soc. 1997, 144, L210.
    13.Natarajan, C.; Matsumoto, H.; Nogami, G.. J. Electrochem. Soc., 1997, 144, 121.
    14.Srinivasan, V.; Weidner, J.W. J. Electrochem. Soc., 2000, 147, 880.
    15.Possin, G.E. Rev. Sci. Instrum. 1970, 41, 772.
    16.Williams, W. D.; Giordano, N. Rev. Sci. Instrum. 1984, 55, 410.
    17.Brumlik, C. J.; Menon, V. P.; Martin, C. R. J. Mater. Res,. 1994, 9, 1174.
    18.Jirage, K. B.; Hulteen,J. C.; Marin, C. R. Science, 1997, 278, 24.
    19.Chakarvarti, S. K.; Vetter, J. Nucl. Instrum. Meth. Phys. Recs. 1991, B62, 109.
    20.Hornyak, G. L.; Martin, C. R. J. Phys. Chem., 1997, 101, 1548.
    21.Nishizawa, M.; Menon, V. P.; Martin, C. R. Science, 1995, 268, 700.
    22.Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Chem. Mater,. 1998, 9, 857.
    23.Martin, C. R. Adv. Mater., 1991, 3, 457.
    24.Van Dyke, L. S.; Martin, C. R. Langmuir, 1990, 6, 1123.
    25.莊萬發編著“無電解鍍金”, 復漢出版社, 2000.
    26.Menon, V. P.; Martin, C. R. Anal. Chem., 1995, 67, 1920.
    27.Suzuki, M. Adsorption Engineering, Elsevier: Tokyo, 1990.
    28.J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, 1998.
    29.Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York, 1988.
    30.Bard, A. J.; Faulkner, L. R. Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
    31.Young, H. D. Physics, Addison-Wesley Publishing Co.: New York, 1992.
    32.Qu, D.; Shi, H. J. Power Sources 1998, 74, 99.
    33.Hamann, C. H.; Hamnett, A.; Vielstich, W. Electrochemistry, Wiley-Vch: New York, 1998.
    34.Mattson, J. S.; Jr. Mark, H. B. Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, 1971.
    35.Bard, A. J.; Faulkner, L. R., “Electrochemical Methods Fundamental and Application”, John Wiley & Sons, Canada, 1980.
    36.Hu, Chi-Chang; Huang, Yao-Huang J. Electrochem. Soc., 1999, 146, 2465.
    37.Lowell, S.; Shields, J. E. Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London, 1991.
    38.Ruthven, D. M. Principles of Adsorption and Adsorption Process John Wiley & Sons: New York 1984.
    39.Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London, 1998.
    40.余樹楨, ”晶體之結構與性質”, 渤海堂文化公司印行, 1989.
    41.Grzybek, T. Fuel 1993, 72, 619.
    42.Pasel, J.; Käβner, P.; Montanari, B.; Gazzano, M.; Vaccari, A.; Makowski, W.; Lojewski, T.; Dziembaj, R.; Papp, H. Appl. Catal. B 1998, 18, 199.
    43.Rodríguze-Reinoso, F.; Molina-Sabio, M.; Gonazález, M.T. Carbon, 1995, 33, 15.
    44.Tzeng, S. S.; Chang, F. Y. Thin Solid Films 2001, 388, 143.
    45.Lambert, M. R.; Duquette, D. J. Thin Solid Films 1989, 177, 207.
    46.Ma, E.; Luo, S.; Li, P. Thin Solid Films 1988, 166, 273.
    47.Wu, M. S.; Huang, C. M.; Wang, Y. Y.; Wan, C. C. Electrochimica Acta 1999, 44, 4007.
    48.Ovshinsky, S. R. In Physical Properties of Amorphous Materials. Adler, D., Schwartz, B. B. and Steele, M. C., Eds.; Plenum Press: New York, 1985; p. 105.
    49.Streinz, C. C.; Jartman, A. P.; Motupally, S.; Weidner, J. W. J. Electrochem. Soc., 1995, 142, 1084.
    50.Streinz, C. C.; Jartman, A. P.; Motupally, S.; Weidner, J. W. J. Electrochem. Soc., 1995, 142, 4051.
    51.Kalu, E. E.; Nwoga, T. T.; Srinivasan, V.; Weidner, J. W. J. Power Sources, 2001, 92 163.
    52.Nian, Y.-R.; Teng, H. J. Electrochem. Soc., 2002, 149, A1008.
    53.Nian, Y.-R.; Teng, H. Journal of Electroanalytical Chemistry 2003, 540, 119.
    54.Hsu, L.-Y.; Teng, H. Applied Catalysis B-Environmental 2003, 42, 69.
    55.T.-C. Weng and H. Teng, J. Electrochem. Soc., 2000, 148, A368.
    56.Teng, H.; Chang, Y.-J.; Hsieh, C.-T. Carbon 2001, 39 1981.
    57.Liu , X.; Osaka, T. J. Electrochem. Soc., 1997, 144, 3066.
    58.Mul, G.; Neeft, J.P.A.; Kapteijn, F.; Moulijn, J.A. Carbon 1998, 36 1269.

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE