| 研究生: |
譚傲卡 Tanuwijaya, Abednego Oscar |
|---|---|
| 論文名稱: |
具相變化微膠囊層光電模組之熱/電性能數值模擬 Numerical Simulation on Thermal/Electrical Performance of a Photovoltaic Module Integrated with Microencapsulated Phase Change Material Layer |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 太陽能光電 、含相變化微膠囊 |
| 外文關鍵詞: | Microencapsulated phase change material, Thermal management, Solar Photovoltaic |
| 相關次數: | 點閱:160 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,太陽能光電科技因對尋找合適的再生能源的急迫需求而快速發展。而在實際應用上為了保持PV模組最大的光電轉換效率,PV模組的工作溫度最好維持在25oC附近,甚至更低。因此,本次研究建立了一個數值模擬的程式,來研究探討在不同的天候操作情況下,將PV模組背面貼附一內含相變化微膠囊(microencapsulated phase change material-MEPCM)之夾層,用以作為被動式溫控裝置的效益為何。而研究中則針對戶內外環境溫度、每日輻射日照量、MEPCM夾層厚度和相變化材料融點等參數對PV模組在熱電方面的效能影響作探討。這個模擬用三種的操作條件(夏天的-Ra = 7.5 x 108,冬天的-Ra = 5.2 x 108,正常的-Ra = 6.95 x 108),MEPCM兩個熔化溫度(26跟34oC),MEPCM兩個寛高比(0.277 跟1)。而根據模擬所得的結果顯示,相變化材料之融點溫度與夾層的高寬比對PV模組之熱電效應有顯著的影響。
Recently, the solar photovoltaic (PV) application technology grows rapidly with the urgent need for seeking sustainable and renewable energy sources. To retain the maximum electrical conversion efficiency for practical applications, the PV module should be operated at a temperature preferably lower than or around 25oC. In this context, the present study via a numerical simulation aims to explore efficacy of using a microencapsulated phase change material (MEPCM) layer as a passive thermal management medium for a PV module under various daily operation conditions. Parametric simulations have been performed for the thermal/electrical performances of the PV module under three different operation conditions with twodifferent aspect ratios of 0.277 and 1of the MEPCM layer with two different melting points at 26 and 34oC, respectively. The numerical simulations clearly demonstrate that the temperature of PV module can be markedly decreased about 4.6 C by incorporatingthe MEPCM layer of aspect ratio 0.277 with the melting point of 26 C during the winter operation considered.
Ahmed, M., Meade, O., Medina, M.A., “Reducing Heat Transfer across the Insulated Walls of Refrigerated Truck Trailers by the Application of Phase Change Materials,” Energy Conversion and Management, Vol.51, pp.383-392,2010.
Beckermann, C., Viskanta, R., Ramadhyani, S., “A Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled with a Porous Medium,” Numerical Heat Transfer, Vol.10, pp.557-570, 1986.
C.Hasse, M.Grenet, A.Bontemps, R.Dendievel, H.Salle,”Realization, Test and Modelling of Honeycomb Wallboards Containing a Phase Change Material,” Energy and Buildings, 2010, Vol. 43, pp.232-238
Eicker, U., Dalibard, A.,” Photovoltaic–Thermal Collectors for Night Radiative Cooling of Buildings”, Solar Energy, 2011, Vol. 85, pp.1322–1335
Heim, D., “ Isothermal Storage of Solar Energy in Building Construction,” Renewable Energy, 2009, Vol.35, pp.788-796.
Ho, C.J., “A Continuum Model for Transport Phenomena in Convective Flow of Solid-Liquid Phase Change Material Suspensions,” Applied Mathematical Modeling, 2005, Vol.29, pp.805-817.
H.Dariusz,”Isothermal Storage of Solar Energy in Building Construction,” Renewable Energy, 2010, Vol. 35, pp.788-798
Huang M.J., P.C. Eames , B. Norton,” Phase Change Materials for Limiting Temperature Rise in Building Integrated Photovoltaics”, Solar Energy,2006, Vol. 80, pp.1121–1130
Kladias, N., Prasad, V., “Experimental Verification of Darcy-Brinkman-Forchheimer Flow Model for Natural Convection in Porous Media,” Journal of Thermophysics and Heat Transfer, 1990, Vol.5, NO.4, pp.50-576.
Lauriat, G., Prasad, V., “Non-Darcian Effects on Natural Convection in a Vertical Porous Enclosure,” International Communications in Heat and Mass Transfer, 1989, Vol.32, pp.2135-2148.
Liu,H., Awbi, H.B., “Performance of Phase Change Material Boards under Natural Convection,” Building and Environment, 2009, Vol.44, pp.1788-1793.
Maiti, S., Banerjee, S., Vyas, K., Patel, P., Ghosh, P. K.,” Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix”, Solar Energy, 2011, doi:10.1016/j.solener.2011.04.021
Nakayama, A., Ando, K., Yang, C., “A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media,” Heat and Mass Transfer, 2009, Vol. 45, pp.1365-1372.
N.Zhu, S.Wang, X.Xu, Z.Ma,”A Simplified Dynamic Model of Building Structures Integrated with Shaped-Stabilized Phase Change Materials,” International Journal of Thermal Sciences, 2010, Vol. 49, pp 1722-1731
Radziemska, E.,” Performance Analysis of a Photovoltaic-Thermal Integrated System”, Hindawi Publishing Corporation International Journal of Photo energy, 2009, Article ID 732093, 6 pages doi:10.1155/2009/732093
Safaripour, M. H., Mehrabian, M. A.,” Predicting The Direct, Diffuse, and Global Solar Radiation on a Horizontal Surface and Comparing with Real Data”, Heat Mass Transfer, 2011, doi: 10.1007/s00231-011-0814-8
X.Duan, G.F.Naterer,”Thermal Protection of a Ground Layer with Phase Change Materials,” Journal of Heat Transfer, 2010, Vol. 132