| 研究生: |
謝孟哲 Hsieh, Meng-Che |
|---|---|
| 論文名稱: |
端粒酶RNA分子缺失增強惡性腫瘤細胞遷移 Loss of Telomerase RNA Component Increases Malignant Cancer Cell Migration |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 端粒酶RNA分子 、細胞間質轉型(EMT) 、癌症治療 |
| 外文關鍵詞: | Telomerase RNA Component (TERC), Migration, Cancer Therapy, Aging |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
端粒是位於染色體末端的一段DNA重複序列,用於保持染色體的完整性和控制細胞分裂周期。每當細胞進行分裂,端粒的長度就縮短一些,一旦端粒長度短到一定程度,細胞則會停止生長甚至進入細胞凋亡,這稱為複製老化。然而,大多數癌細胞能無限制地複製是因為端粒酶(telomerase)的活性被激活,根據研究指出,端粒酶在幹細胞以及癌細胞中的活性較高,而在體細胞幾乎不表現,因此對於癌症治療端粒酶能做為良好的標靶。端粒酶是由RNA (端粒酶RNA,TERC)以及蛋白質(端粒酶活性催化部位,TERT)所組成的複合體,因此選擇端粒酶RNA的部分以及端粒酶活性催化部位進行標的。本研究藉由RNA干擾(RNA interference, RNAi)在多種癌細胞中(HeLa、MDA-MB-231、PC3)穩定抑制端粒酶RNA分子的表現。首先,觀察穩定抑制端粒酶RNA表現的細胞株型態,顯示與對照組細胞形態上有明顯差異,此細胞形態較類似間質型細胞。接著,分析該細胞株生長以及爬行情況,實驗結果顯示,在第一代的靜默株中其生長速度與爬行能力與對照組之間並無差異,但從第五代之後,細胞生長速度較為緩慢、細胞週期分佈改變及細胞爬行能力明顯增加。有趣的是,利用西方墨點法(Western blot)分析一些蛋白質的表現情形,結果顯示,參與p53 路徑(hdm2、p53、p21)的蛋白質表現皆為下調,而在EMT相關標誌E-cadherin、-catenin等蛋白質表現皆明顯下降,指出TERC缺失會使細胞有EMT現象。綜合以上研究結果,TERC靜默株隨著代數增加,細胞生長受到影響且細胞爬行能力增加,因此將TERC作為癌症標的需注意是否會有EMT現象發生,而使癌細胞更惡化。
Telomeres at the ends of linear chromosomes protect chromosomes from degradation and repair activities which is essential for ensuring chromosome stability. When cells divide once, telomeres progressively become shorten until a few short telomeres become uncapped and end up leading to a growth arrest known as replicative aging. However, a classic cancer hallmark is the ability of malignant cells to proliferate unlimitedly that almost correlates with the telomerase activity. Cancer cells have the telomerase complex including a telomerase RNA component (TERC) and the reverse transcriptase catalytic subunit (TERT) that enable to overcome senescence by maintaining telomere lengths. Thus, TERC and TERT are the best targets for the development of mechanism-based cancer therapy. We established some stable TERC- knockdown cancer cell lines by RNAi (RNA interference), including HeLa (Cervical cancer), MDA-MB-231 (Breast cancer), and PC3 (Prostate cancer). The results show that loss of TERC expression would change the cell morphology, but cell proliferation rate and cell migration ability in the first and fifth passages are without significant differences. Interestingly, the cell proliferation rate decreases, but cell migration ability increases in tenth and twentieth passages. Western blot analysis indicates that p53 pathway (HDM2, p53, p21) and many types of cyclins are downregulated. The EMT marker like E-cadherin is also downregulated in TERC knockdown cells. We found that the level of senescence marker in twentieth passage TERC knockdown cells is higher than mock cancer cells by x-gal staining. In conclusion, loss of TERC increases cell migration ability, so we should take more considerations in cancer therapy when using TERC as a target.
[1] De Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002).
[2] Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).
[3] Collins, K. & Mitchell, J. R. Telomerase in the human organism. Oncogene 21, 564–579 (2002).
[4] Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).
[5] Nikitina, T. & Woodcock, C. L. Chromatin loops at the ends of chromosomes. J. Cell Biol. 166, 161–165 (2004).
[6] De Lange, T. T-loops and the origin of telomeres. Nature Rev. Mol. Cell Biol. 5, 323–329 (2004).
[7] Dong CK, Masutomi K, Hahn WC. Telomerase: Regulation, function and transformation. Crit. Rev. Oncol. Hematol. 54:85–93 (2005).
[8] Shay JW, Wright WE. Telomerase: a target for cancer therapeutics. Cancer Cell 2:257–65 (2002).
[9] Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73:177-208 (2004).
[10] Feng, J., et al. The RNA component of human telomerase. Science 269:1236–1241 (1995).
[11] Chen, J. L., M. A. Blasco, and C. W. Greider. Secondary structure of vertebrate telomerase RNA. Cell 100:503–514 (2000).
[12] Dez, C., et al. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar ribonucleoprotein proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 29:598–603 (2001).
[13] Dragon, F., V. Pogacic, and W. Filipowicz. In vitro assembly of human H/ACA small nucleolar ribonucleoproteins reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20:3037–3048 (2000).
[14] Mitchell, J. R., J. Cheng, and K. Collins. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’end. Mol. Cell. Biol. 19:567–576 (1999).
[15] Mitchell, J. R., and K. Collins. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell 6:361–371 (2000).
[16] Pogacic, V., F. Dragon, and W. Filipowicz. Human H/ACA small nucleolar ribonucleoproteins and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20:9028–9040 (2000).
[17] Lingner, J., et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567 (1997).
[18] Nakamura, T., et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 277:955-959 (1997).
[19] Eickbush, T. H. Telomerase and retrotransposons: which came first? Science. 277:911–912 (1997).
[20] Nakamura, T. M., and T. R. Cech. Reversing time: origin of telomerase. Cell 92:587–590 (1998).
[21] Armbruster, B., et al. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21:7775–7786 (2001).
[22] Friedman, K. L., and T. R. Cech. Essential functions of aminoterminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13:2863–2874 (1999).
[23] Moriarty, T. J., S. Huard, S. Dupuis, and C. Autexier. Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol. Cell. Biol. 22:1253–1265 (2002).
[24] Xia, J., Y. Peng, I. S. Mian, and N. F. Lue. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20:5196–5207(2000).
[25] Calado, R.T. and Young, N.S. Telomere diseases. N. Engl. J. Med. 361: 2353–2365 (2009).
[26] Artandi, S.E. Telomere shortening and cell fates in mouse models of neoplasia. Trends Mol. Med. 8:44–47(2002).
[27] Harley, C.B. Telomerase and cancer therapeutics. Nat. Rev. Cancer. 8:167–179 (2008).
[28] Shay, J.W. and Wright, W.E. Telomerase therapeutics for cancer: challenges and new directions. Nat. Rev. Drug Discov. 5:577-584 (2006).
[29] Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34 (1997).
[30] Feldser, D.M. and Greider, C.W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:461-469 (2007).
[31] Artandi, S.E. et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl. Acad. Sci. 99:8191-8196 (2002).
[32] Choi, J., et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4:e10 (2008).
[33] Smith, L.L., et al. Telomerase modulates expression of growth controlling genes and enhances cell proliferation. Nat. Cell Biol. 5:474-479 (2003).
[34] Lindvall, C., et al. Molecular characterization of human telomerase reverse transcriptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene. Cancer Res. 63:1743–1747 (2003)
[35] Inatomi, O., et al. Regulation of amphiregulin and epiregulin expression in human colonic subepithelial myofibroblasts. Int. J. Mol. Med. 18:497–503 (2006).
[36] Fynan, T.M. and Reiss, M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit. Rev. Oncog. 4:493–540 (1993).
[37] Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100:57–70 (2000).
[38] Kinzler, K.W. and Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87:159–170 (1996).
[39] Zhou, Z.Q. and Hurlin, P.J. The interplay between Mad and Myc in proliferation and differentiation. Trends Cell Biol. 11:S10–S14 (2001).
[40] George, J., et al. Combination of hTERT knockdown and IFN gamma treatment inhibited angiogenesis and tumor progression in glioblastoma. Clin. Cancer Res. 15:7186–7195 (2009).
[41] Lee, S.H., et al. IFN-gamma/IRF-1-induced p27kip1 downregulates telomerase activity and human telomerase reverse transcriptase expression in human cervical cancer. FEBS Lett. 579:1027-1033 (2005).
[42] Zhou, L., et al. Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity. Biochem. Biophys. Res. Commun. 386:739–743 (2009).
[43] Zaccagnini, G., et al. Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischemia. J. Biol. Chem. 280:14790–14798 (2005).
[44] Bermudez, Y., et al. VEGF- and LPA-induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecol. Oncol. 106:526–537 (2007).
[45] Ghosh, A., et al. Telomerase directly regulates NF-kappa B dependent transcription. Nat. Cell Biol. 14:1270–1281 (2012).
[46] Irelan, J.T., et al. A role for IkappaB kinase 2 in bipolar spindle assembly. Proc. Natl. Acad. Sci. 104:16940–16945 (2007).
[47] Singhapol, C., et al. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS ONE 8:e52989 (2013).
[48] Bermudez, Y., et al. Telomerase confers resistance to caspasemediated apoptosis. Clin. Interv. Aging. 1:155–167 (2006).
[49] Indran, I.R., et al. hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS mediated apoptosis in cancer cells. Cancer Res. 71:266–276 (2011).
[50] Liu, Z., et al. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. 32:4203-4213 (2012).
[51] Huber, M.A., et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114:569–581 (2004).
[52] Fukuyama, R., et al. Role of IKK and oscillatory NFkappaB kinetics in MMP-9 gene expression and chemoresistance to 5- fluorouracil in RKO colorectal cancer cells. Mol. Carcinog. 46:402–413
[53] Becker, C., et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220 (2005).
[54] Wu, S., et al. Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol. Cell. Biochem. 375:69–79 (2013).
[55] Shao, N., et al. The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells. Biochem. Biophys. Res. Commun. 431:535–541 (2013).
[56] Kanterman, J., et al. New insights into chronic inflammationinduced immunosuppression. Semin. Cancer Biol. 22:307–318 (2012).
[57] Baniyash, M. Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin. Cancer Biol. 16:80–88 (2006).
[58] Biswas, S.K. and Tergaonkar, V. Myeloid differentiation factor 88-independent Toll-like receptor pathway: Sustaining inflammation or promoting tolerance? Int. J. Biochem. Cell Biol. 39:1582–1592 (2007).
[59] Bagheri, S., et al. Genes and pathways downstream of telomerase in melanoma metastasis. Proc. Natl. Acad. Sci. 103:11306–11311 (2006).
[60] Yochum, G.S., et al. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol. Cell. Biol. 28:7368–7379 (2008).
[61] Kawauchi, K., et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 10:611–618 (2008).
[62] Artandi, S.E. and DePinho, R.A. Telomeres and telomerase in cancer. Carcinogenesis 31:9–18 (2010).
[63] Masutomi, K., et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl. Acad. Sci. 102:8222–8227 (2005)
[64] Harley C, Futcher A, Greider C. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460 (1990).
[65] Heidinger BJ., et al. Telomere length in early life predicts lifespan. Proc. Natl. Acad. Sci. 109:1743–1748 (2012).
[66] Armanios M, and Blackburn EH. The telomere syndromes. Nat. Rev. Genet. 13:693–704 (2013).
[67] Mitchell J, Wood E, and Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555 (1999).
[68] Heiss N., et al. X‐linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 19:32–38 (1998).
[69] Wyllie F., et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24:16–17 (2000).
[70] Lawless C., et al. Quantitative assessment of markers for cell senescence. Exp. Gerontol. 45:772–778 (2010).
[71] Gary RK, and Kindell SM. Quantitative assay of senescence associated beta-galactosidase activity in mammalian cell extracts. Anal. Biochem. 343:329–334 (2005).
[72] Kurz DJ., et al. Senescence associated β‐galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell. Sci. 20:3613–3622 (2000).
[73] Pati S., et al. X-gal staining of canine skin tissues: A technique with multiple possible applications. J. Nat. Sci. Biol. Med. 5:245–249 (2014).
[74] Narita M,. et al. Rb‐mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716 (2003).
[75] Narita M,. et al. A novel role for high‐mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514 (2006).
[76] Kennedy AL,. et al. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci. Cell. Div. 5:16 (2010).
[77] Kosar M., et al. Senescence‐associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type‐ and insult‐dependent manner and follow expression of p16(ink4a). Cell Cycle 10:457–468 (2011).
[78] Zhang R, Chen W, and Adams PD. Molecular Dissection of Formation of Senescence‐Associated Heterochromatin Foci. Mol. Cell. Biol. 27:2343–2358 (2007).
[79] Hovest MG., et al. Senescence of Human Fibroblasts after Psoralen Photoactivation Is Mediated by ATR Kinase and Persistent DNA Damage Foci at Telomeres. Mol. Biol. Cell. 17:1758–1767 (2006).
[80] Sedelnikova O., et al. Senescing human cells and ageing mice accumulateDNA lesions with unrepairable double‐strand breaks. Nat. Cell. Biol. 6:168–170 (2004).
[81] Sharma A, Singh K, and Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods. Mol. Biol. 920:613–626 (2012).
[82] Balajee A, and Geard C. Replication protein A and gamma‐H2AX foci assembly is triggered by cellular response to DNA doublestrand breaks. Exp. Cell. Res. 300:320–634 (2004).
[83] Paull TT., et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10:886–895 (2000).
[84] Rogakou EP., et al. DNA Double‐stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. J. Biol. Chem. 273:5858–5868 (1998).
[85] Burzynski S. Gene silencing‐a new theory of aging. Med. Hypotheses. 60:578–583 (2003).
[86] Zhang X., et al. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase. Oncotarge 6:4888–900 (2015).
[87] Guilleret I, and Benhattar J. Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp. Cell. Res. 289:326–334 (2003).
[88] Wilson K, and Stern DF. NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell Cycle 7:3584-3594 (2014).
[89] Iwabuchi K., et al. Characterization of a cancer cell line that expresses a splicing variant form of 53BP1: separation of checkpoint and repair functions in 53BP1. Biochem. Biophys. Res. Commun. 376:509–513 (2008).
[90] Wenger B., et al. PML‐nuclear bodies decrease with age and their stress response is impaired in aged individuals. BMC Geriatr 14:42 (2014).
[91] Ferbeyre G., et al. PML is induced by oncogenic ras and promotes premature senescence. Genes. Dev. 14:2015–2027 (2000).
[92] Osterwald S., et al. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J. Cell. Sci. 128:1887–1900 (2015).
[93] Harley, C. B., Futcher, A. B. and Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460 (1990).
[94] Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921–1929 (1992).
[95] Phatak, P. and Burger, A. M. Telomerase and its potential for therapeutic intervention. Br. J. Pharmacol. (2007).
[96] Fakhoury, J., Nimmo, G. A. and Autexier, C. Harnessing telomerase in cancer therapeutics. Anticancer Agents Med. Chem. 7:475–483 (2007).
[97] Camp, E. R. et al. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin. Cancer Res. 11:397–405 (2005).
[98] Pascolo, E. et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J. Biol. Chem. 277:15566–15572 (2002).
[99] Ward, R. J. and Autexier, C. Pharmacological telomerase inhibition can sensitize drug-resistant and drugsensitive cells to chemotherapeutic treatment. Mol. Pharmacol. 68:779–786 (2005).
[100] Asai, A. et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 63:3931–3939 (2003).
[101] Djojosubroto, M. W. et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42:1–12 (2005).
[102] Dikmen, Z. G., et al. Telomerase targeted oligonucleotide thio-phosphoramidates in T24-luc bladder cancer cells. J. Cell Biochem. (2007).
[103] Nair, N. K. et al. Induction of cytotoxic T cells responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6:1011–1013 (2000).
[104] Vonderheide, R. et al. Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthy individuals. Cancer Res. 61:8366–8370 (2001).
[105] Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959 (1997).
[106] Cohen, S. B. et al. Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853 (2007).
[107] Gannage, M. et al. Ex vivo characterization of multiepitopic tumor- specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J. Immunol. 174:8210–8218 (2005).
[108] Filaci, G. et al. Frequency of telomerase-specific CD8+ T lymphocytes in cancer patients. Blood 107:1505–1512 (2005).
[109] Brunsvig, P. F. et al. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 55:1553–1564 (2006).
[110] Nair, N. K. et al. Induction of cytotoxic T cells responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6:1011–1013 (2000).
[110] Su, Z. et al. Enhanced induction of telomerase-specific CD4+ T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res. 62:5041–5048 (2002).
[111] Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 (1998).
[112] Pecot, C.V., et al. RNA interference in the clinic: challenges and future directions. Nature Rev. Cancer 11:59–67 (2011).
[113] Kim, D.H., and Rossi, J.J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8:173–184 (2007).
[114] Ganesh, S., et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 34: 3489–3502 (2013).
[115] Stéphane M., et al. Cell cycle restriction of telomere elongation. Curr Biol. 10:487-90 (2000).
[116] Rebecca L., et al. Cell Cycle-regulated Trafficking of Human Telomerase to Telomeres. Mol. Biol. Cell. 17: 955–965 (2006).
[117] Xueli Z., et al. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc. Natl. Acad. Sci. 93:6091-6095 (1996).
[118] Cheryl M., et al. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J. Clin. Invest. 125:2109-2122 (2015).
[119] Cho K., et al. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 293:230-239 (2010).
校內:2021-07-27公開