簡易檢索 / 詳目顯示

研究生: 許子衡
Hsu, Tz-Heng
論文名稱: 網際網路多媒體資料快取、預儲及共享技術之研究
Data Caching, Prefetching and Sharing Schemes for Multimedia Applications over the Internet
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 104
中文關鍵詞: 資料探勘資料預儲策略多媒體代理伺服器串流媒體資料快取策略
外文關鍵詞: Multimedia Proxy, Multimedia Caching and Replacement Policy, Streaming Media
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著無線與行動寬頻網際網路的逐漸實踐,行動式多媒體資訊應用系統,例如行動視訊電話、無線視訊會議、以及家庭網路等無線與行動式多媒體資訊應用系統,將成為我們未來生活中重要的一環,提供更多的多媒體加值服務。行動通訊使用者透過行動手持裝置與網際網路Internet 連結,能隨時隨地取得豐富的網路資訊。然而,隨著多媒體網路傳輸系統的快速發展,產生了許多效能上的問題。為此,敝人在博士論文中探討了三個在多媒體網路傳輸系統中極為重要的效能改進技術,即多媒體資料快取(caching)、預儲(prefetching)以及共享(resource sharing)技術。

      為了解決網路頻寬的不足所造成的多媒體服務品質問題,我們提出了一個以媒體物件價值為考量觀點的快取演算法GCC-DS-F-DA。此演算法除了考慮傳統網路環境中影響資料暫存的因子,如物件大小及傳輸延遲,還考慮了多媒體物件價值及其對多媒體內容服務提供者的整體效益。在本演算法中,我們設計了一個快取利益(Profit)計算公式,利用此公式來評估快取一多媒體物件所能得到的回饋(Caching Reward)。根據得到的利益,來決定物件是否暫存於快取空間之中。GCC-DS-F-DA演算法的主要貢獻有二: (1) 藉由以媒體物件價值為考量觀點的快取利益計算公式,增加行動通訊服務提供者的整體效益(2) 減少使用者存取多媒體服務的等待時間。

      接著,因為影音媒體有檔案大小及即時傳輸的特徵,在串流媒體分段(Segment)為基礎的研究上,代理伺服器所接收的多媒體影音物件區塊被歸類成長度不定的、距離敏感的區段。從一個多媒體影音物件的開始,根據參考頻率和區段距離,在不同的區段上附加不同的優先權。由於一個被部份快取的多媒體影音物件總是從頭開始,因此開始區段有較高的優先權,減低使用者的啟始延遲(Start-up Delay)。再者,有較高參考頻率的多媒體影音物件會被快取較多的區段。因此,我們為多媒體代理伺服器發展了一個互動式多媒體串流快取機制(User-Aware Prefetching Policy),藉由分析使用者行為模式,利用資料探勘(Data Mining)的結果,找出使用者行為樣式(User Behavior Pattern)來預測其可能的網路存取趨勢,預儲可能存取的媒體分段,增加快取的命中率,減少使用者的等待時間。

      最後,針對多媒體物件的資源共享技術,我們提出了以XML 技術為基礎的資源共享網路,探討對等共享網路(Peer-to-Peer)的互通及共享能力。P2P 對等共享網路提供了網際網路使用者資源分享的服務。為了使資源共享更加普及,需要一種方式來連結異質P2P 資源共享網路,使其能相互溝通及協同合作。為此,我們提出了以Ultra-Peer 為基礎之異質資源共享網路架構Shoran,來滿足異質P2P 資源共享網路的相互存取需求。Shoran 提供了(1)一個訊息路由方法來將檔案查詢(query)訊息傳遞至不同的P2P 檔案共享網路,和(2)一個以XML 技術為基礎的共同訊息格式,使得不同的異質P2P 檔案共享網路間能交換訊息,達到資源共享的目的。

     Mobile Internet allows users to retrieve any information any time, any place on any device.
    New generation of smart wireless devices can provide an easier way to retrieve existing
    multimedia services for mobile users. VOIP and video conferencing are the typical popular
    techniques to help the communication among mobile users. The need of using multimedia services
    through mobile devices drives the researches of new wireless multimedia technologies.The increasing use of wireless multimedia service invokes several research issues that need to be resolved. In this dissertation, we invest in three important technical issues for distributed
    multimedia systems executed in the Internet: multimedia caching, prefetching, and resource sharing.

     To speed up the transmission of multimedia objects in wireless network environments,
    we propose a price-based caching algorithm named GCC-DS-F-DA (GCC-DS with Frequency
    and Dynamic Aging). Unlike other existing caching replacement algorithms considering only
    the object size and transmission delay, the GCC-DS-F-DA caching algorithm considers both
    the requirement of (i) service and content providers and (ii) mobile users. In the GCC-DS-FDA
    caching algorithm, a caching profit formula is derived to estimate the reward for service
    providers to cache a multimedia object. By caching only those objects that have a higher gold
    content ratio and larger response time than others, service and content providers can get better reward and users can get better service quality.

     To decrease the retrieval latency of continuous media, we propose a user-aware prefetching
    scheme that uses the association rules from the data mining results. The demand of large
    storage space and bandwidth makes the object-based cache schemes less efficient and unsuitable
    in caching continuous media. The random and unpredictable user behaviors during a multimedia
    presentation may cause the long retrieval latency in the client-server connection. The data
    mining technique can provide some priority information such as the support, confidence, and
    association rules which can be utilized for prefetching continuous media. Thus, using the data
    mining technique, the proposed user-aware prefetching scheme can predict user behaviors and
    evaluate segments that may be accessed in near future. Performance experiments show that the
    proposed user-aware prefetching scheme is effective in improving the latency reduction, even
    for small cache sizes.

     Finally, we propose a novel P2P architecture named Shoran for interconnecting heterogeneous
    P2P resource sharing networks to enable connectivity and universal access of multimedia
    objects. Heterogeneous P2P file sharing networks need a way to collaborate and communicate
    with each other. Based on the approach of interconnecting heterogeneous P2P resource
    sharing networks, users on one P2P resource sharing network can share and search multimedia
    objects with other P2P resource sharing networks. Shoran provides (i) a message routing
    mechanism to route query messages among different P2P resource sharing networks and (ii) an
    XML-based uniform resource format that can ease the message exchange among heterogeneous
    P2P resource sharing networks.
    Keywords: Multimedia Proxy, Streaming Media, Multimedia Caching and Replacement Policy,
    Multimedia Prefetching Policy, Data Mining, Peer-to-Peer Networks, Wireless and Mobile
    networks, Resource sharing, Resource Discovery and Retrieval.

    Contents I List of Figures IV 1 Introduction 1 1.1 Proxy, Caching, and Prefectching . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Overview of Proxy Servers . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Existing Caching and Prefetching Algorithms . . . . . . . . . . . . . . 5 1.2 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 P2P Resource Sharing Networks . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Existing P2P Resource Sharing Architectures . . . . . . . . . . . . . . 8 1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Price-based Caching for Mobile Multimedia Services 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Usage-based Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Gold Content Control Policy (GCC) . . . . . . . . . . . . . . . . . . . 16 2.3.2 Gold Content Control Policy with Delay Sensitive (GCC-DS) . . . . . 17 2.3.3 GCC-DS with Frequency and Dynamic Aging . . . . . . . . . . . . . 18 2.4 Cache Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I 2.5 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 User-Aware Prefetching Mechanism for Interactive Video Streaming 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Real Time Streaming Protocol (RTSP) . . . . . . . . . . . . . . . . . . . . . . 31 3.3 User Behaviors Using RTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Mining User Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Mining User Behaviors with Association Rules . . . . . . . . . . . . . 39 3.5 The Streaming Prefetching Control Scheme . . . . . . . . . . . . . . . . . . . 42 3.5.1 User-Aware Prefetching Policy . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Scenario of the User-Aware Prefetching Control Scheme . . . . . . . . 46 3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Resource Sharing over the P2P Overlay Network 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 P2P Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.1 Lookup Routing Module . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Message Exchange Module . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.3 Protocol Adaptation Module . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.4 Result Cache Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 II 4.4 Architecture Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.1 Resource Discovery Strategies . . . . . . . . . . . . . . . . . . . . . . 65 4.4.2 Resource Retrieval Scheme . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 The Uniform Message Format (UMF) . . . . . . . . . . . . . . . . . . . . . . 72 4.5.1 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . 73 4.5.2 Query Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5.3 Response Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Implementation and Performance Evaluation . . . . . . . . . . . . . . . . . . . 77 4.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6.2 Internal Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Conclusion 91

    [1] A. Mahanti, C. Williamson, and D. Eager, “Traffic Analysis of a Web Proxy Caching
    Hierarchy,” IEEE Network, VOL. 14, NO. 3, pp. 16–23, May 2000.
    [2] Z. Xiang, Q. Zhang, W. Zhu, and Y. Zhong, “Cost-based Replacement Policy for Multimedia
    Proxy across Wireless Internet,” in IEEE GLOBECOM 2001, VOL. 3, Nov 2001,
    pp. 2009–2013.
    [3] Q. Zhang, Z. Xiang, W. Zhu, and L. Gao, “Cost-based Cache Replacement and Server
    Selection for Multimedia Proxy across Wireless Internet,” IEEE Transactions on Multimedia,
    VOL. 6, NO. 4, pp. 587–598, August 2004.
    [4] I. Bouazizi and M. Gunes, “Selective Proxy Caching for Robust Video Transmission
    over Lossy Networks,” in Proceedings of the International Conference on Information
    Technology: Research and Education, Aug 2003, pp. 69–73.
    [5] G. Stojsic, R. Radovic, and S. Srbljic, “Formal Definition of SIP Proxy Behavior,” in
    International Conference on Trends in Communications (EUROCON’2001), VOL. 2, Jul
    2001, pp. 289–292.
    [6] M. Hofmann, T. S. E. Ng, K. Guo, S. Paul, and H. Zhang, “Caching Techniques for
    Streaming Multimedia over the Internet,” in Technical Report, Bell Laboratories, April
    1999.
    [7] H. O. H. E. J. Lim, S. H. Park and K. D. Chung, “Proxy Caching Scheme for Continuous
    Media Streams on the Internet,” in Proceedings of the 15th International Conference on
    Information Networking, 2001, pp. 720–725.
    [8] J. Kangasharju, Y. G. Kwon, and A. Ortega, “Design and Implementation of a Soft
    Caching Proxy,” Computer Networks and ISDN Systems, VOL. 30, NO. 22, pp. 2113–
    2122, 1998.
    [9] R. Rejaie, H. Yu, M. Handely, and D. Estrin, “Multimedia Proxy Caching Mechanism
    for Quality Adaptive Streaming Applications in the Internet,” in Proceedings of IEEE
    Infocom 2000, 2000, pp. 980–989.
    [10] F. Yu, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “QoS-Adaptive Proxy Caching for Multimedia
    Streaming Over the Internet,” IEEE Transactions on Circuits and Systems for Video
    Technology, VOL. 13, NO. 3, pp. 257–269, 2003.
    [11] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for Multimedia Streams,” in
    Proceedings of INFOCOM ’99, VOL. 3, 1999, pp. 1310–1319.
    [12] W.-K. Liao and C.-T. King, “Proxy Prefetch and Prefix Caching,” in Proceedings of the
    IEEE International Conference on Parallel Processing, 2001, pp. 95–102.
    [13] Y. Guo, S. Sen, and D. Towsley, “Prefix Caching Assisted Periodic Broadcast for Streaming
    Popular Videos,” in Proceedings of the IEEE International Conference on Communications
    (ICC 2002), VOL. 4, 2002, pp. 2607–2612.
    [14] M. Abrams, C. Stanbridge, G. Abdulla, S. Williams, and E. Fox, “Caching Proxies:
    Limitation and Potential,” in Proceedings of the 4th International World Wide Web Conference,
    1995, pp. 119–133.
    [15] S. Williams, M. Abrams, C. Stanbridege, G. Abdulla, and E. Fox, “Removal Policies in
    Network Caches for World-Wide Web Documents,” ACM SIGCOMM Computer Communication
    Review, VOL. 26, NO. 4, pp. 293–305, 1996.
    [16] R. Wooster and M. Abrams, “Proxy Caching the Estimates Page Load Delays,” in Proceedings
    of the 6th International World Wide Web Conference, 7-11 April 1997.
    [17] P. Cao and S. Irani, “Cost Aware WWW Proxy Caching Algorithms,” in Proceedings
    of the USENIX Symposium on Internet Technologies and Systems (USITS), 1997, pp.
    193–206.
    [18] L. Cherkasova, Improving WWW Proxies Performance with Greedy-Dual-Size-
    Frequency Caching Policy, HP Laboratories Report No. HPL-98-69R1, 1998.
    [19] Y. Li, C. Y. Chiang, and M. T. Liu, “Effective Web Caching for GPRS Networks,” in
    Proceedings of the 2001 International Conference on Computer Networks and Mobile
    Computing, 2001, pp. 85–90.
    [20] V. N. Padmanabhan and J. C. Mogul, “Using Predictive Prefetching to Improve World
    Wide Web Latency,” in Proceedings of the SIGCOMM ’96 conference, 1996.
    [21] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the Bounds of Web Latency
    Reduction from Caching and Prefetching,” in USENIX Symposium on Internet Technologies
    and Systems, 1997.
    [22] W. Tavanapong, K. A. Hua, and J. Z. Wang, “A Framework for Supporting Previewing
    and VCR Operations in a Low Bandwidth Environment,” in ACM Multimedia, 1997, pp.
    303–312.
    [23] M. Hofmann, E. Ng, K. Guo, S. Paul, and H. Zhang, “Caching Techniques for Streaming
    Multimedia over the Internet,” in Technical Report BL011345-990409-04TM, Bell
    Laboratories, 1999.
    [24] Napster, LLC., Napster, http://www.napster.com, 2003.
    [25] M. Ripeanu, “Peer-to-peer Architecture Case Study: Gnutella Network,” in Proceedings
    of International Conference on Peer-to-peer Computing (P2P2001), Linkopings, Sweden,
    27-29 August 2001, pp. 99–100.
    [26] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hongang, “Freenet: A Distributed Anonymous
    Information Storage and Retrieval System,” Lecture Notes in Computer Science,
    VOL. 2009, pp. 46–66, July 2000.
    [27] D. Barkai, “Technologies for sharing and collaborating on the Net,” in Proceedings of
    the 1st International Conference on Peer-to-Peer Computing, Aug 2001, pp. 13–28.
    [28] I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley, “Protecting Free Expression
    Online with Freenet,” IEEE Internet Computing, VOL. 6, NO. 1, pp. 40–49, January
    2002.
    [29] R. Schollmeier and G. Schollmeier, “Why Peer-to-Peer (P2P) Does Scale: an Analysis
    of P2P Traffic Patterns,” in Proceedings of the 2nd International Conference on Peer-to-
    Peer Computing, Sept 2002, pp. 112–119.
    [30] D. Menasce, “Scalable P2P Search,” IEEE Internet Computing, VOL. 7, NO. 2, pp. 83–
    87, 2003.
    [31] R. Matei, A. Iamnitchi, and P. Foster, “Mapping the Gnutella Network,” IEEE Internet
    Computing, VOL. 6, NO. 1, pp. 50–57, January 2001.
    [32] L. Gong, “JXTA: A Network Programming Environment,” IEEE Internet Computing,
    VOL. 5, NO. 3, pp. 88–95, May 2001.
    [33] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
    for Large-Scale Peer-to-Peer Systems,” in IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001, pp.
    329–350.
    [34] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: an Infrastructure for Fault-
    Resilient Wide-Area Location and Routing,” UC Berkeley, Tech. Rep. UCB//CSD-01-
    1141, April 2001.
    [35] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
    Peer-To-Peer Lookup Service for Internet Applications,” in ACM SIGCOMM 2001, ser.
    Computer Communication Review. ACM Press, New York, 27-31 August 2001, pp.
    149–160.
    [36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable contentaddressable
    network,” in ACM SIGCOMM 2001. San Diego, California, United States:
    ACM Press, New York, 27-31 August 2001, pp. 161–172.
    [37] Kubiatowicz, J. et al., “OceanStore: An Architecture for Global-Scale Persistent Storage,”
    ACM SIGPLAN Notices, VOL. 35, NO. 11, pp. 190–201, November 2000.
    [38] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multicasting with Delaunay Triangulation
    Overlays,” IEEE Journal on Selected Areas in Communications, VOL. 20,
    NO. 8, pp. 1472–1488, October 2002.
    [39] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “SCRIBE: The Design of
    a Large-Scale Event Notification Infrastructure,” in Proceedings of the 3rd International
    Workshop on Networked Group Communications (NGC2001), London, UK, 7-9 November
    2001, pp. 30–43.
    [40] B. Cohen, “Incentives Build Robustness in BitTorrent,” 2003. [Online]. Available:
    citeseer.nj.nec.com/cohen03incentives.html
    [41] B. Dessent, Brian’s BitTorrent FAQ and Guide, http://www.dessent.net/btfaq/, 2004.
    [42] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
    and Z. Xu, “Peer-to-Peer Computing,” in HP Laboratories Palo Alto; HPL-2002-57,
    2002.
    [43] V. Kumar and D. Parimi, S. abd Agrawal, “WAP: Present and Future,” IEEE Pervasive
    Computing, VOL. 2, NO. 1, pp. 79–83, January 2003.
    [44] G. Vincent, “Learning from i-Mode,” IEE Review, VOL. 47, NO. 6, pp. 13–18, November
    2001.
    [45] NTT DoCoMo Inc., Service Information, http://www.docomotohoku.
    co.jp/main/info/imode c/menu/english/site english1.html#news, 2002.
    [46] J. Zhang, R. Izmailov, D. Reininger, and M. Ott, “Web Caching Framework: Analytical
    Models and Beyond,” in Proceedings of the IEEE Workshop on Internet Applications,
    1999, pp. 132–141.
    [47] M. Liu, F.-Y.Wang, D. Zeng, and L. Yang, “An Overview ofWorldWideWeb Caching,”
    in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
    VOL. 5, 2001, pp. 3045–3050.
    [48] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web Caching Systems: Modeling, Design
    and Experimental Results,” IEEE Journal on Selected Areas in Communications,
    VOL. 20, NO. 6, pp. 1305–1314, 2002.
    [49] M. J. MacKie and H. Variann, Some FAQs about Usage-based Pricing, http://wwwpersonal.
    umich.edu/ jmm/papers/useFAQs/useFAQs.pdf, 1994.
    [50] K. Anagnostakis and F. Harmantzis, “Simple Usage-Based Charging of Web Cache Services,”
    in Proceedings of the NLANR Web Cache Workshop, 1997.
    [51] Y. Li, C. Y. Chiang, and M. T. Liu, “Effective Web Caching for GPRS Networks,” in
    Proceedings of the 2001 International Conference on Computer Networks and Mobile
    Computing, 2001, pp. 85–90.
    [52] M. Arlitt, R. Friedrich, and T. Jin, “Workload Characterization of aWeb Proxy in a Cable
    Modem Environment,” Performance Evaluation Review, VOL. 27, NO. 2, pp. 25–36,
    September 1999.
    [53] M. Arlitt and C. Williamson, “Trace-driven Simulation of Document Caching Strategies
    for Internet Web Servers,” SIMULATION Journal, VOL. 68, NO. 1, pp. 23–33, January
    1997.
    [54] M. Mielke and A. Zhang, “A Multi-level Buffering and Feedback Scheme for Distributed
    Multimedia Presentation Systems,” in Proceedings of the 7th International Conference
    on Computer Communications and Networks, Oct 1998, pp. 219–226.
    [55] L. Deng, R.-X. Chen, R.-C. Chang, and T.-S. Huang, “Adaptive Content Model for
    Multimedia Presentation,” in Proceedings of the 1st International Symposium on Cyber
    Worlds, Oct 2002, pp. 209–216.
    [56] T. Lemlouma and N. Layaida, “Encoding Multimedia Presentations for User Preferences
    and Limited Environments,” in Proceedings of the International Conference on Multimedia
    and Expo (ICME ’03), VOL. 2, July 2003, pp. 165–168.
    [57] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer, “Adapting to Network and Client Variation
    using Infrastructural Proxies: Lessons and Perspectives,” IEEE Personal Communications,
    VOL. 5, NO. 4, pp. 10–19, August 1998.
    [58] B. Li, M. Golin, G. Italiano, and K. Xin Deng; Sohraby, “On the Optimal Placement of
    Web Proxies in the Internet,” in Proceedings of the IEEE INFOCOM ’99, VOL. 3, March
    1999, pp. 1282–1290.
    [59] S.-W. Shin, K.-Y. Kim, and J.-S. Jang, “LRU-based Small Latency First Replacement
    (SLFR) Algorithm for the Proxy Cache,” in Proceedings of the IEEE/WIC International
    Conference on Web Intelligence (WI 2003), Oct. 2003, pp. 499–502.
    [60] C.-W. Lin, J. Zhou, J. Youn, and M.-T. Sun, “MPEG Video Streaming with VCRfunctionality,”
    IEEE Transactions on Circuits and Systems for Video Technology,
    VOL. 11, NO. 3, pp. 415–425, 2001.
    [61] J. Kwon and H. Yeom, “Providing VCR Functionality in Staggered Video Broadcasting,”
    IEEE Transactions on Consumer Electronics, VOL. 48, NO. 1, pp. 41–48, February
    2002.
    [62] J.-M. Choi, S.-W. Lee, and K.-D. Chung, “A Multicast Delivery Scheme for VCR Operations
    in a Large VOD System,” in Proceedings of the 8th International Conference on
    Parallel and Distributed Systems (ICPADS 2001), June 2001, pp. 555–561.
    [63] K. Gao, Y. Zhang,W. Gao, and S. He, “Real-time Scheduling Supporting VCR Functionality
    for Scalable Video Streaming,” in The 14th IEEE Proceedings on Personal, Indoor
    and Mobile Radio Communications (PIMRC 2003), VOL. 3, 2003.
    [64] R. Cucchiara, M. Piccardi, and A. Prati, “Temporal Analysis of Cache Prefetching Strategies
    for Multimedia Applications,” in Proceedings of the IEEE International Conference
    on Performance, Computing, and Communications, April 2001, pp. 311–318.
    [65] B. Wu and A. Kshemkalyani, “Objective-Greedy Algorithms for Long-Term Web
    Prefetching,” in Proceedings of the 3rd IEEE International Symposium on Network Computing
    and Applications (NCA 2004), Aug 2004, pp. 61–68.
    [66] R. Cucchiara, M. Piccardi, and A. Prati, “Neighbor Cache Prefetching for Multimedia
    Image and Video Processing,” IEEE Transactions on Multimedia, VOL. 6, NO. 4, pp.
    539–552, 2004.
    [67] B. Thuraisingham and M. Ceruti, “Understanding Data Mining and Applying it to Command,
    Control, Communications and Intelligence Environments,” in The 24th Annual
    International Computer Software and Applications Conference (COMPSAC 2000), Oct.
    2000, pp. 171–175.
    [68] B. Thuraisingham, “A Primer for Understanding and Applying Data Mining,” IT Professional,
    VOL. 2, NO. 1, pp. 28–31, 2000.
    [69] J. Han and K. Chang, “Data Mining for Web Intelligence,” Computer, VOL. 35, NO. 11,
    pp. 64–70, 2002.
    [70] Y. J. Chung, J. W. Kim, and C. Kuo, “DCT-based Error Concealment for RTSP Video
    over a Modem Internet Connection,” in Proceedings of the 1998 IEEE International Symposium
    on Circuits and Systems (ISCAS ’98), VOL. 6, June 1998, pp. 518–521.
    [71] C. Jee and K. Shin, “A DAVIC Video-on-Demand system based on the RTSP,” in Proceedings
    of the 2001 Symposium on Applications and the Internet, Jan. 2001, pp. 231–
    238.
    [72] L. V. S. B. W. Westerink, P.; Amini, “A Live Intranet Distance Learning System using
    MPEG-4 over RTP/RTSP,” in IEEE International Conference on Multimedia and Expo
    (ICME 2000), VOL. 2, Aug. 2002, pp. 601–604.
    [73] H.Schulzrinne, A.Rao, and R.Lanphier, “Real Time Streaming Protocol (RTSP),” in Internet
    draft, IETF, August 1997.
    [74] S.-C. Chen, S.-T. Li, M.-L. Shyu, C. Zhan, and C. Zhang, “A Multimedia Semantic
    Model for RTSP-based Multimedia Presentation Systems,” in Proceedings of the 4th
    International Symposium on Multimedia Software Engineering, Dec. 2002, pp. 124–131.
    [75] RealNetworks, Inc., RealSystem Server, http://www.realnetworks.com/, 2001.
    [76] Apple Computer, Inc., Darwin Streaming Server,
    http://www.opensource.apple.com/projects/streaming/, 2001.
    [77] B. Liu, W. Hsu, S. Chen, and Y. Ma, “Analyzing the Subjective Interestingness of Association
    Rules,” IEEE Intelligent Systems and Their Applications, VOL. 15, NO. 5, pp.
    47–55, 2000.
    [78] S. Madria, C. Raymond, S. Bhowmick, and M. Mohania, “Association Rules for Web
    data Mining in WHOWEDA,” in International Conference on Digital Libraries: Research
    and Practice, Nov. 2000, pp. 227–233.
    [79] J. Li, H. Shen, and R. Topor, “Mining the Smallest Association Rule Set for Predictions,”
    in Proceedings of the IEEE International Conference on Data Mining (ICDM 2001),
    Nov. 2001, pp. 361–368.
    [80] J. Han and M. Kamber, Data Mining: Concepts and Techniques, ISBN 1-55860-489-8,
    2001.
    [81] D.-I. Lin and Z. Kedem, “Pincer-search: an Efficient Algorithm for Discovering the Maximum
    Frequent Set,” IEEE Transactions on Knowledge and Data Engineering, VOL. 14,
    NO. 3, pp. 533–566, May 2002.
    [82] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Proceedings
    of the 20th International Conference on Very Large Databases, 1994.
    [83] J. Gao and P. Steenkiste, “Design and Evaluation of a Distributed Scalable Content Discovery
    System,” IEEE Journal on Selected Areas in Communications, VOL. 22, NO. 1,
    pp. 54–66, 2004.
    [84] C. Gavalda, P. Lopez, and A. Skarmeta, “Dermi: a New Distributed Hash Table-based
    Middleware Framework,” IEEE Internet Computing, VOL. 8, NO. 3, pp. 74–84, May
    2004.
    [85] D. Bauer, P. Hurley, R. Pletka, and M.Waldvogel, “Bringing Efficient Advanced Queries
    to Distributed Hash Tables,” in Proceedings of the 29th Annual IEEE International Conference
    on Local Computer Networks, Nov. 2004, pp. 6–14.
    [86] StreamCast Networks, Inc., Morpheus, http://www.morpheus.com, 2003.
    [87] Sharman Networks, Ltd., Kazaa Media Desktop, http://www.kazaa.com, 2003.
    [88] iMesh.com, iMesh, http://www.imesh.com, 2003.
    [89] S. M. Lui and S. H. Kwok, “Interoperability of Peer-To-Peer File Sharing Protocols,”
    ACM SIGecom Exchanges, VOL. 3, NO. 3, pp. 25–33, August 2002.
    [90] D. Brickley and R. Guha, Resource Description Framework (RDF) Schema Specification
    1.0, World Wide Web Consortium, http://www.w3.org/TR/rdf-schema/, 2000.
    [91] J. Mason, “XML and RDF: the Promise and the Reality of New Web Architectures,”
    Computer Networks and ISDN Systems, VOL. 30, NO. 1-7, pp. 763–765, April 1998.
    [92] M. Klein, “XML, RDF, and Relatives,” IEEE Intelligent Systems, VOL. 16, NO. 2, pp.
    26–28, 2001.
    [93] Y. Bourda and B. L. Doan, “The Semantic Web for Learning Resources,” in Proceedings
    of the 3rd IEEE International Conference on Advanced Learning Technologies, July
    2003, pp. 322–323.
    [94] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf, RFC 2413: Dublin Core Metadata for
    Resource Discovery, http://www.ietf.org/rfc/rfc2413.txt, September 1998.
    [95] C. Jenkins and D. Inman, “Server-side Automatic Metadata Generation using Qualified
    Dublin Core and RDF,” in Proceedings of the International Conference on Digital Libraries:
    Research and Practice, 2000, pp. 262–269.
    [96] P. Leach and R. Salz, UUIDs and GUIDs, Internet Engineering Task Force, February
    1998.
    [97] Sun Microsystems, Inc., Java APIs for XML Processing (JAXP),
    http://java.sun.com/xml/jaxp/, 2003.
    [98] Limewire.org, Limewire, http://www.limewire.org, 2004.
    [99] MetaMachine, eDonkey 2000 Network, http://www.edonkey2000.com, 2003.
    [100] Dict.org, File: The Free Internet Lexicon and Encyclopedia,
    http://www.dict.org/file.html, 2003.
    [101] Sharman Networks, Ltd., Participation Level, http://www.kazaa.com/us/help/glossary/
    participation ratio.htm, 2003.
    [102] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large Networks,” in Proceedings
    of the 2nd ACM SIGCOMM Workshop on Internet Measurement, Marseille,
    France, November 2002, pp. 137 – 150.

    下載圖示 校內:2006-07-08公開
    校外:2008-07-08公開
    QR CODE