簡易檢索 / 詳目顯示

研究生: 張孟哲
Chang, Meng-Je
論文名稱: 超臨界二氧化碳環境下添加聚丙烯纖維及含矽材料之套管水泥性質研究
A study of the properties of casing cement containing polypropylene fiber and silica materials in supercritical carbon dioxide environment
指導教授: 王建力
Wang, Chein-Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: API-G水泥超臨界二氧化碳聚丙烯纖維碳化矽二氧化矽
外文關鍵詞: API-G cement, Supercritical CO2, polypropylene fibers, silicon carbide, silicon dioxide
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫室效應所引起的氣候變化是自工業革命以來全球最重大的共同問題之ㄧ。為解決一直以來的碳排放問題,碳補集與封存技術中的地質封存法被認為是目前各國為達成淨零碳排放最具有可行性與潛力的技術之一。在二氧化碳注入地層中的過程中,通常會導致注入的二氧化碳與儲集層中存在的鹽水產生反應形成碳酸水,與水泥基質發生化學反應。這種化學反應改變了水泥的成分,並增加了其滲透性,這樣的過程我們稱之為碳化(Carbonation),因為水泥體內部出現了微裂縫,最終使水泥結構損壞強度下降。
    在過去的研究發現,添加含矽材料(例如:二氧化矽、碳化矽)以及聚丙烯纖維可增強API-G水泥性能,減緩水泥基質受到二氧化碳碳化造成的影響,並且增加力學強度。
    本研究三種不同配比之添加物加入API-G水泥中,放入不同溫度、壓力(45°C、13.2MPa; 52°C、16.2MPa; 60°C、18.8MPa)之超臨界二氧化碳環境中反應0、7、14、28天,並在反應完成後進行物理特性(黏度試驗、滲透率試驗、密度試驗、超聲波試驗)、力學(單軸抗壓、巴西抗拉試驗)及微觀結構分析(SEM、EDS),最後將各項試驗結果彙整後探討含有不同添加物之水泥在三種溫度壓力下的性質變化。
    研究結果顯示,添加5wt.% SiO_2+0.125wt.%PPF的試體在三種配比中最能改善水泥性質,這是由於矽晶質填補孔隙使水泥的滲透性降低,防止二氧化碳侵蝕,並且因為聚丙烯纖維凝聚水泥基質,並因此提升了力學強度。

    Climate change caused by the greenhouse effect is one of the most important common problems in the world since the industrial revolution. In order to solve the long-standing problem of carbon emissions, carbon capture and storage (CCS) technology is considered to be one of the most feasible and promising technologies for countries to achieve net zero carbon emissions. Carbon dioxide is captured and injected into the stratum, such as oil and gas layer, gas layer, and deep saline layer, etc. When CO2 is injected more than 800m underground, the temperature and pressure of the stratum will reach the critical point of its phase. The injection of CO2 into the formation usually results in a reaction between the injected CO2 and the brine present in the reservoir to form carbonic acid water, which reacts chemically with the cement matrix. This chemical reaction changes the composition of the cement and increases its permeability, a process we call carbonation, as microcracks appear within the cement body, eventually causing a loss of strength of the cement structure.
    Previous studies found that the addition of silica-containing materials (e.g., silica, silicon carbide) and polypropylene fibers could enhance the performance of API-G cement, mitigate the effects of carbonation on the cement matrix, and increase the mechanical strength.
    In this study, three different ratios of additives were added to API-G cement and placed in a supercritical CO2 environment at different temperatures and pressures (45°C, 13.2 MPa; 52°C, 16.2 MPa; 60°C, 18.8 MPa) for 0, 7, 14, and 28 days.
    The results showed that the addition of 5 wt.% SiO2 + 0.125 wt.% PPF improved the cement properties the most among the three ratios, due to the silica filling of the pores, which reduced the permeability of the cement and prevented CO2 erosion, and because the polypropylene fibers coalesced the cement matrix and thus improved the mechanical strength.

    摘要I Extended AbstractII 致謝XIV 目錄XV 圖目錄XVII 表目錄XXIII 式目錄XXIV 第一章 緒論1 1-1 研究背景與動機1 1-2 研究內容與流程8 第二章 文獻回顧10 2-1 二氧化碳捕捉與封存10 2-1-1 二氧化封存方式11 2-1-2 二氧化碳洩漏之研究13 2-2 水泥碳化研究18 2-2-1 水泥碳化機制20 2-2-2 水泥碳化對性質的影響21 2-2-3 二氧化碳對添加材料之水泥的性質影響26 2-3 添加二氧化矽的水泥試體性質研究30 2-4 添加碳化矽的水泥試體性質研究34 2-5 添加聚丙烯纖維的水泥試體性質研究39 2-6 本實驗室歷屆模擬二氧化碳環境之相關研究42 第三章 實驗材料與設備51 3-1 試驗材料與製備51 3-1-1 試驗材料及配比51 3-1-2 試體製備54 3-2 各項試驗設備與方法58 3-2-1 超臨界二氧化碳養治設備58 3-2-2 黏度試驗61 3-2-3 密度試驗64 3-2-4 滲透率試驗65 3-2-5 超聲波試驗66 3-2-6 單軸抗壓試驗68 3-2-7抗拉強度試驗70 3-2-8 碳化深度量測71 3-2-9 微觀結構及成分組成分析(SEM及EDS)72 第四章 實驗結果與討論74 4-1 黏度試驗75 4-2 密度試驗76 4-3 滲透率試驗79 4-4 超聲波試驗82 4-5 單軸抗壓強度試驗89 4-6 巴西抗拉試驗92 4-7 碳化深度量測試驗95 4-8 微觀結構及成分組成分析(SEM與EDS)98 4-8-1 SEM分析99 4-8-2 EDS分析109 4-9綜合討論112 第五章 結論與建議118 5-1 結論118 5-2建議120 參考文獻121

    Albawi, A., 2013, Influence of thermal cycling on cement sheath integrity: Institutt for petroleumsteknologi og anvendt geofysikk.
    Aydin, A., 2013, Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, p. 95-99.
    Bagheri, M., Shariatipour, S. M., and Ganjian, E., 2018, A review of oil well cement alteration in CO2-rich environments: Construction and Building Materials, v. 186, p. 946-968.
    Bahari, A., Berenjian, J., and Sadeghi-Nik, A., 2016, Modification of Portland Cement with Nano SiC: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, v. 86, no. 3, p. 323-331.
    Barlet-Gouedard, V., Rimmelé, G., Goffé, B., and Porcherie, O., 2007, Well technologies for CO2 geological storage: CO2-resistant cement: Oil & Gas Science and Technology-Revue de l'IFP, v. 62, no. 3, p. 325-334.
    Barlet-Gouedard, V., Rimmele, G., Goffe, B., and Porcherie, O., 2006, Mitigation strategies for the risk of CO2 migration through wellbores, IADC/SPE Drilling Conference, p. SPE-98924-MS.
    Brandl, A., Cutler, J., Seholm, A., Sansil, M., and Braun, G., 2011, Cementing Solutions for Corrosive Well Environments: SPE Drilling & Completion, v. 26, no. 02, p. 208-219.
    Brydie, J. R., Perkins, E. H., Fisher, D., Girard, M., Valencia, M., Olson, M., and Rattray, T., 2014, The Development of a Leak Remediation Technology for Potential Non- Wellbore Related Leaks from CO2 Storage Sites: Energy Procedia, v. 63, p. 4601-4611.
    Carey, J. W., Wigand, M., Chipera, S. J., WoldeGabriel, G., Pawar, R., Lichtner, P. C., Wehner, S. C., Raines, M. A., and Guthrie, G. D., 2007, Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA: International Journal of Greenhouse Gas Control, v. 1, no. 1, p. 75-85.
    Crow, W., Carey, J. W., Gasda, S., Brian Williams, D., and Celia, M., 2010, Wellbore integrity analysis of a natural CO2 producer: International Journal of Greenhouse Gas Control, v. 4, no. 2, p. 186-197.
    Dalton, L. E., Crandall, D., and Pour-Ghaz, M., 2022, Supercritical, liquid, and gas CO2 reactive transport and carbonate formation in portland cement mortar: International Journal of Greenhouse Gas Control, v. 116, p. 103632.
    Duguid, A., Radonjic, M., and Scherer, G. W., 2011, Degradation of cement at the reservoir/cement interface from exposure to carbonated brine: International Journal of Greenhouse Gas Control, v. 5, no. 6, p. 1413-1428.
    Duguid, A., and Scherer, G. W., 2010, Degradation of oilwell cement due to exposure to carbonated brine: International Journal of Greenhouse Gas Control, v. 4, no. 3, p. 546-560.
    Ershadi, V., Ebadi, T., Rabani, A., Ershadi, L., and Soltanian, H., 2011, The effect of nanosilica on cement matrix permeability in oil well to decrease the pollution of receptive environment: International Journal of Environmental Science and Development, v. 2, no. 2, p. 128.
    Fu, H., Guo, X., Zhou, P., Yan, P., Zheng, Y., Liu, L., Wu, J., and Li, M., 2021, Modification of Low-Density Slag Cementing Slurry with SiC Whiskers at High Temperature: Advances in Materials Science and Engineering, v. 2021, p. 9586645.
    Güner, D., and ÖZTÜRK, H., 2015, Comparison of mechanical behaviour of G class cements for different curing time.
    Garnier, A., Laudet, J.-B., Neuville, N., Le Guen, Y., Fourmaintraux, D., Rafai, N., Burlion, N., and Shao, J.-F., 2010, CO2-Induced Changes in Oilwell Cements Under Downhole Conditions: First Experimental Results, SPE Annual Technical Conference and Exhibition, p. SPE-134473-MS.
    Global-CCS-Institute, 2021, Global Status of CCS.
    Gu, T., Guo, X., Li, Z., Cheng, X., Fan, X., Korayem, A., and Duan, W. H., 2017, Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions: Construction and Building Materials, v. 130, p. 92-102.
    Hossain, M. M., and Amro, M. M., 2010, Drilling and Completion Challenges and Remedies of CO2 Injected Wells with Emphasis to Mitigate Well Integrity Issues, SPE Asia Pacific Oil and Gas Conference and Exhibition, p. SPE-133830-MS.
    IEA, 2021, World Energy Outlook
    IPCC, policymakers, S. f., and O. Edenhofer, R. P.-M., Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Sclömer, C. von Stechow, T. Zwickel, J.C. Minx (Eds.), Climate Change 2013: Mitigation of Climate Change. Contribution of Working Group, III, to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, NY, USA (2014), 2019, <Reservoir_Geomechanics_HW_2_2020.pdf>.
    Jeon, I. K., Qudoos, A., Jakhrani, S. H., Kim, H. G., and Ryou, J.-S., 2020, Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder: Powder Technology, v. 359, p. 181-189.
    Jia, B., Tsau, J.-S., and Barati, R., 2019, A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs: Fuel, v. 236, p. 404-427.
    King, P., Bland, K. J., Funnell, R., and Archer, R., 2009, Opportunities for underground geological storage of CO2 in New Zealand -Report CCS -08/5 -Onshore Taranaki Basin overview: GNS Science Report, v. 58.
    Lackner, K. S., and Brennan, S., 2009, Envisioning carbon capture and storage: expanded possibilities due to air capture, leakage insurance, and C-14 monitoring: CLIMATIC CHANGE, v. 96, no. 3, p. 357-378.
    Ledesma, R. B., Lopes, N. F., Bacca, K. G., Moraes, M. K. d., Batista, G. d. S., Pires, M. R., and Costa, E. M. d., 2020, Zeolite and fly ash in the composition of oil well cement: Evaluation of degradation by CO2 under geological storage condition: Journal of Petroleum Science and Engineering, v. 185, p. 106656.
    Li, C., Zhang, K., Wang, Y., Guo, C., and Maggi, F., 2016, Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China: International Journal of Greenhouse Gas Control, v. 45, p. 216-232.
    Mahmoud, A. A., and Elkatatny, S., 2020a, Improved durability of Saudi Class G oil-well cement sheath in CO2 rich environments using olive waste: Construction and Building Materials, v. 262, p. 120623.
    -, 2020b, Improving class G cement carbonation resistance for applications of geologic carbon sequestration using synthetic polypropylene fiber: Journal of Natural Gas Science and Engineering, v. 76, p. 103184.
    Małek, M., Jackowski, M., Łasica, W., and Kadela, M., 2020, Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement: Materials, v. 13, no. 8.
    Mohn, K., 2020, The Gravity of Status Quo: A Review of IEA's World Energy Outlook: ECONOMICS OF ENERGY & ENVIRONMENTAL POLICY, v. 9, no. 1, p. 63-81.
    Nordbotten, J. M., Celia, M. A., Bachu, S., and Dahle, H. K., 2005, Semianalytical Solution for CO2 Leakage through an Abandoned Well: Environmental Science & Technology, v. 39, no. 2, p. 602-611.
    Raza, A., Gholami, R., Rezaee, R., Rasouli, V., and Rabiei, M., 2019, Significant aspects of carbon capture and storage – A review: Petroleum, v. 5, no. 4, p. 335-340.
    Rutqvist, J., 2012, The Geomechanics of CO2 Storage in Deep Sedimentary Formations: Geotechnical and Geological Engineering, v. 30, no. 3, p. 525-551.
    Salvi, B. L., and Jindal, S., 2019, Recent developments and challenges ahead in carbon capture and sequestration technologies: SN Applied Sciences, v. 1, no. 8.
    Silva, E. K., and Meireles, M. A. A., 2014, Encapsulation of food compounds using supercritical technologies: applications of supercritical carbon dioxide as an antisolvent: Food Public Health, v. 4, no. 5, p. 247-258.
    Yuanhua, L., Dajiang, Z., Dezhi, Z., Yuanguang, Y., Taihe, S., Kuanhai, D., Chengqiang, R., Deping, Z., and Feng, W., 2013, Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions: Corrosion Science, v. 74, p. 13-21.
    Zawrah, M. F., El-Kheshen, A. A., and El-Maghraby, A. A., 2012, Effect of SiC–graphite–Al-metal addition on low- and ultra-low cement bauxite castables: Ceramics International, v. 38, no. 5, p. 3857-3862.
    江建豪, 2012, 超臨界二氧化碳環境下對套管水泥力學與物化性質之影響.
    行政院環境保護署, 2021, 中華民國國家溫室氣體排放清冊報告.
    李冠穎, 2010, 二氧化碳環境下對油井水泥之物理性質及化學性質之影響.
    林唐筠, 2017, 超臨界二氧化碳環境下添加不同鈣矽比摻料對套管水泥力學、物理與化學性質之研究.
    許真惠, 2018, 超臨界二氧化碳環境下添加碳化矽之套管水泥基本性質之研究.
    郭俊志, 2015, 二氧化碳封存環境下對封固材料基本性質影響之研究.
    陳宏銓, 2014, 超臨界二氧化碳環境下對添加矽酸化合物套管水泥性質之研究.
    陳思螢, 2012, 超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究.
    黃卉宇, 2019, 不同溫度及壓力的超臨界二氧化碳環境下含碳化矽及二氧化矽之套管水泥性質研究.
    楊昀叡, 2011, 二氧化碳環境下纖維摻料對套管水泥性質之研究.
    劉浙仁, 譚志豪, and 冀樹勇, 2016, 臺灣發展二氧化碳地質封存之場址評選策略研議: 中興工程, no. 131, p. 19-28.
    謝欣婷, 2016, 超臨界二氧化碳環境下對添加碳化矽套管水泥力學與物化性質之研究.

    無法下載圖示 校內:2027-06-24公開
    校外:2027-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE