| 研究生: |
林瑞昇 Lin, Jui-Sheng |
|---|---|
| 論文名稱: |
強健滑動模式控制應用於混沌系統之同步 Synchronization of Chaotic Systems via Robust Sliding Mode Control |
| 指導教授: |
廖德祿
Liao, Teh-Lu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 時間延遲 、同步 、李亞普諾夫穩定性定理 、滑動模式控制 、扇形非線性 、網格型類神經系統 、Lorenz系統 、Hopfield類神經系統 、Rossler系統 、Chua s 電路 |
| 外文關鍵詞: | Sliding mode control, Lyapunov stability theory, Lorenz systems、Chua s circuit systems, Rossler systems, Hopfield neural networks (HNN), Input nonlinearity, Cellular neural networks (CNN), Delays, Synchronization |
| 相關次數: | 點閱:151 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中主要利用可變結構控制理論,探討對於具/不具時延混沌系統同步化之問題。基於主-僕概念、李亞普諾夫穩定性定理,對於Lorenz、 Chua’s電路、Rossler、Hopfield及網格型類神經系統,包含不確定性因子/非線性輸入/未知傳輸時間延遲/扇形非線性/時變延遲等問題,設計強健控制器,以保證系統達到同步。首先,對於具非匹配擾動之Lorenz系統設計強健可變結構控制器來保證系統可順利進入滑動模式,並討論非匹配擾動對系統控制性能的影響。第二部份,對於一類具有未知系統參數及輸入非線性混沌系統提出適應性強健同步控制器的設計方法。第三部份,考慮一類特定具時變及非線性輸入之類神經系統之同步化問題。最後,本文也提供一些說明的範例來證明所提出之主要結果。
In this dissertation, the synchronization problem of chaotic systems with/without time-delay via the variable structure control (VSC) approach is investigated. This includes the development of the mismatch uncertainties/input nonlinearity/unknown channel time-delay/sector nonlinearity/time-varying delays problems for a series of Lorenz systems, Chua’s circuit systems, Rossler systems, Hopfield neural networks (HNN), Cellular neural networks (CNN). Based on the drive-response concept and the Lyapunov stability theorem, some controllers are proposed which guarantee synchronization for a class of chaotic systems. Firstly, a VSC controller is presented to ensure the occurrence of the sliding mode for a class of Lorenz systems subject to mismatch uncertainties. Secondly, the adaptive synchronization of a class of chaotic systems with both unknown system parameters and the nonlinearity in the control input is addressed. Thirdly, the synchronization problem for a particular class of neural networks subject to time-varying delays and input nonlinearity is investigated. Some illustrative examples are included to demonstrate the effectiveness of the proposed synchronization schemes.
[Ban. 1] Bandyopadhyay, B., Janardhanan, S., Discrete-time Sliding Mode Control, Springer, 2006.
[Bon. 1] Bondarenko, V. E., “Control and ’anticontrol’ of chaos in an analog neural network with time delay,” Chaos, Solitons, & Fractals, 13, pp. 139-154, 2002.
[Can. 1] Cannas, B., Cincotti, S., “Hyperchaotic behaviour of two bi-directionally coupled Chua’s circuits,” International Journal of Circuit Theory and Applications, 30, pp. 625-637, 2002.
[Cao. 1] Cao, J., “Global stability conditions for delay CNNs,” IEEE Transaction on . Circuits and SystemsⅠ:Fundamental Theory and Applications, 48, pp. 1330–1333, 2001.
[Car. 1] Carroll, T. L., Pecora, L. M., “Synchronizing chaotic systems,” IEEE Transaction on Circuits and Systems, 38, pp. 453-456, 1991.
[Che. 1] Chen, Y. P., Variable Structure System, Taipei, Taiwan: OpenTech. 1999.
[Che. 2] Chen, G., Dong, X., “On feedback control of chaotic continuous-time system,” IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 40, pp. 591-601, 1993.
[Che. 3] Chen, G.., Zhou, J., Liu, Z., “Global synchronization of coupled delayed neutral networks and applications to chaotic CNN models,” International Journal of Bifurcation and Chaos, 14, pp. 2229–2240, 2004.
[Chu. 1] Chua, L. O., Yang, L., “Cellular neural networks: theory,” IEEE Transaction on . Circuits and Systems , 35, pp. 1257–1272, 1988.
[Cuo. 1] Cuomo, K. M., Oppenheim, A. V., Strogatz, S. H., “Synchronization of Lorenz-based chaotic circuits with application to communications,” IEEE Transaction on Circuits and SystemsⅡ: Analog and Digtal Signal Processing, 40, pp. 626-633, 1993.
[Das. 1] Das II, P. K., Schieve, W. C., Zeng, Z. J., “Chaos in an effective four-neuron neural network,” Physics Letters A, 161, pp. 60-66, 1991.
[Edw. 1] Edwards, C., Spurgeon, S. K., Patton, R. J., “Sliding mode observers for fault detection and isolation,” Automatica, 36, pp. 541-548, 2000.
[Fek. 1] Feki, M., Robert, B., “Observer-based chaotic synchronization in the presence of unknown inputs,” Chaos, Solitons & Fractals,15, pp. 831-840, 2003.
[Gil. 1] Gilli, M., “Strange attractors in delayed cellular neural networks,” IEEE Transaction on Circuits and SystemsⅠ: Fundamental Theory and Applications, 40, pp. 849–853, 1993.
[Guo. 1] Guo, S.M., Shieh, L.S., Chen G., Lin, C.F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and SystemsⅠ: Fundamental Theory and Applications, 47, pp. 1557-1570, 2000.
[Had. 1] Haddad, W. M., Kapila, V., “Antiwindup controllers for systems with input nonlinearities,” J. Guidance Control Dynamic, 19, pp. 1387-1390, 1996.
[He. 1] He, G., Cao, Z., Zhu, P., Ogura, H., “Controlling chaos in a chaotic neural network,” Neural Networks, 16, pp. 1195–1200, 2003.
[Hop. 1] Hopfield, J. J., “Neural networks and physical systems with emergent collective computational abilities,” Proceedings of the National Academy of Sciences, 79, pp. 2554–2558, 1982.
[Hsu. 1] Hsu, K.C., “Adaptive variable structure control design for uncertain time-delay systems with nonlinear input,” Dynamic Control, 8, pp. 341-354, 1998.
[Hsu. 2] Hsu KC., “Sliding mode controllers for uncertain systems with input nonlinearities,” J. Guidance Control Dynamic, 21, pp. 666-669, 1998.
[Hui. 1] Hui, S., Zak, S. H., “Low-order state estimator and compensators for dynamical systems with unknown inputs,” Systems Control Letters, 21, pp. 119-133, 1993.
[Itk. 1] Itkis, U., Control System of Variable Structure, New York: Wiley, 1976.
[Jan. 1] Jankowski, S., Londei, A., Lozowski, A., Mazur, C., “Synchronization and control in a cellular neural network of chaotic units by local pinnings,” International Journal of Circuit Theory and Applications, 24, pp. 275-281, 1996.
[Jan. 2] Jang, M.J., Chen, C.C., Chen, C.O., “Sliding mode control of chaos in the cubic Chua’s circuit system,” International Journal of Bifurcation and Chaos, 12, pp. 1437-1449, 2002.
[Jia. 1] Jiang, G.. P., Zheng, W.X, “Chaos control for a class of chaotic systems using PI-type state observer approach,” Chaos, Solitons & Fractal, 21, pp. 93-99, 2004.
[Joy. 1] Joy, M., “On the global convergence of a class of functional differential equations with applications in neural network theory,” Journal of Mathematical Analysis and Applications, 232, pp. 61–81, 1999.
[Kha. 1] Khalil, H. K., Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
[Lia. 1] Lian, K.Y., Liu, P., Chiang, T.S., Chiu, C.S., “Adaptive synchronization design for chaotic systems via a scalar driving signal,” IEEE Transaction on Circuits and SystemsⅠ: Fundamental Theory and Applications, 49, pp. 17-27, 2002.
[Lu. 1] , J., Lu, J., “Controlling uncertain system using linear feedback,” Chaos, Solitons & Fractal, 17, pp. 127-133, 2003.
[Lu. 2] Lu, H. T., “Chaotic attractors in delayed neural networks,” Physics Letters A, 298, pp. 109–116, 2002.
[Mat. 1] Matsumoto, T., Chua, L. O., Kobayashi, K., “Hyperchaos: laboratory experiment and numerical confirmation,” IEEE Transaction on Circuits and Systems, 33, pp. 1143-1147, 1986.
[Ott. 1] Ott, E., Grebogi, C., Yorke, J. A., “Controlling chaos,” Physical Review Letters, 64, pp. 1196-9, 1990.
[Pec. 1] Pecora, L. M., Carroll, T. L., “Synchronization in chaotic systems,” Physical Review Letters, 64, pp. 821–824, 1990.
[Pen. 1] Peng, J. H., Ding, E. J., Ding, M., Yang, W., “Synchronizing hyperchaos with a scale transmitted signal,” Physical Review Letters, 76, pp. 904-907, 1996.
[Pic. 1] Piccardi, C., Ghezzi, L.L., “Optimal control of a chaotic map: fix point stabilization and attractor confinement,” International Journal of Bifurcation and Chaos, 7, pp. 437-446, 1997.
[Ric. 1] Richter H., “Controlling the Lorenz system: combining global and local schemes,” Chaos, Solitons & Fractal, 12, pp. 2375-2380, 2001.
[Ros. 1] Rossler, O. E., “An equation for hyperchaos,” Physics Letters A, 71, pp. 155-157, 1979.
[Ser. 1] Serletis, A., Gogas, P., “Purchasing power parity nonlinearity and chaos,” Applied Financial Economics, 10, pp. 615-622, 2000.
[Ser. 2] Serletis, A., Gogas, P., “The north American gas markets are chaotic,” The Energy Journal, 20, pp. 83-103, 1999.
[Ser. 3] Serletis, A., Gogas, P., “Chaos in east European black market exchange rates,” Research in Economics, 51, pp. 359-385, 1997.
[Slo. 1] Slotine, J-J E., Li w., Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1990.
[Sne. 1] Sneyers, R., “Climate Chaotic Instability: Statistical Determination and Theoretical Background,” Environmetrics, 8, pp. 517-532, 1997.
[Sto. 1] Stout, D.F., Kaufman, M., Handbook of Operational Amplifier Circuit Design, Mcgraw-Hill, New York, 1976.
[Tam. 1] Tamasevicius, A., “Hyperchaotic circuits: state of art,” Proc. Of NDES, Moscow, Russia, pp. 97-102, 1997.
[Tam. 2] Tamasevicius, A., “Reproducible analogue circuit for chaotic synchronization,” Electronics Letters, 33, pp. 1105-1106, 1997.
[Tas. 1] Tassen, M.T., “Adaptive control and synchronization of a modified Chua’s circuit system,” Applied Mathematics and.Computation, 135, pp. 113-128, 2003.
[Tha. 1] Thangavel, P., Murali, K., Lakshmanan, M., “Bifurcation and controlling of chaotic delayed cellular neural networks,” International Journal of Bifurcation and Chaos, 8, pp. 2481-2492, 1998.
[Tsa. 1] Tsai, H. H., Fuh, C. C., Chang, C. N., “A robust controller for chaotic systems under external excitation,” Chaos, Solitons & Fractal, 14, pp. 627-632, 2000.
[Utk. 1] Utkin V. I., Sliding Mode and Their Applications in Variable Structure Systems, Moscow: Mir Editors, 1978.
[Wan. 1] Wang, X., Chen, G.., “Chaotification via arbitrarily small feedback controls: theory, method, and applications,” International Journal of Bifurcation and Chaos, 10, pp. 549-570, 2000.
[Wan. 2] Wang, C., Ge, S.S., “Synchronization of two uncertain chaotic systems via adaptive backstepping,” International Journal of Bifurcation and Chaos, 11, pp. 1743-1751, 2001.
[Wu. 1] Wu, T., Chen, M.S., “Chaos control of the modified Chua’s circuit system,” Physica D, 164, pp. 53-58, 2002.
[Yan. 1] Yang, S. K., Chen, C. L., Yau, H. T., “Control of chaos in Lorenz system,” Chaos, Solitons & Fractal, 13, pp. 767-780, 2002.
[Yan. 2] Yan, J. J., “Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs,” International Journal of Robust and Nonlinear Control, 13, pp. 519-532, 2003.
[Yan. 3] Yang, T., Wu, C. W., Chua, L. O., “Cryptography based on chaotic system,” IEEE Transaction on Circuits and SystemsⅠ: Fundamental Theory and Applications, 44, pp. 469-472, 1997.
[Yau. 1] Yau, H.T., “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons & Fractals, 22, pp. 341-347, 2004.
[Yau. 2] Yau, H.T., Yan, J. J., “Design of sliding mode controller for Lorenz chaotic system with nonlinear input,” Chaos, Solitons & Fractals, 19, pp. 391-398, 2004.
[Yas. 1] Yassen, M. T., “Chaos control of Chen chaotic dynamical system,” Chaos, Solitons & Fractal, 15, pp. 271-283, 2003.
[Yu. 1] Yu, H., Liu, Y., Peng, J., “Control of chaotic neural networks based on contraction mappings,” Chaos, Solitons & Fractals, 22, pp. 787-792, 2004.
[Yu. 2] Yu, X., Song, Y., “Chaos synchronization via controlling partial state of chaotic systems,” International Journal of Bifurcation and Chaos, 11, pp. 1737-1741, 2001.
[Zak. 1] Zak, S. H., Hui, S., “On variable structure output feedback controllers for uncertain dynamic systems,” IEEE Transactions on Automatic control., 38, pp. 1509-1512, 1993.
[Zha. 1] Zhang, J., Li, C., Zhang, H., Yu, J., “Chaos synchronization using single variable feedback based on backstepping method,” Chaos, Solitons & Fractals, 21, pp. 1183-1193, 2004.
[Zho. 1] Zhou, J., Chen, T., Xiang, L., “Robust synchronization of delayed neural networks based on adaptive control and parameters identification,” Chaos, Solitons & Fractals, 27, pp. 905–913, 2006.