簡易檢索 / 詳目顯示

研究生: 張鈞期
Chang, Chun-chi
論文名稱: 不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究
Study on Phosphorus Removal by Fluidized-bed Crystallization Technology: Metal Reagent Effect
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 回收成核流體化床結晶除磷過飽和
外文關鍵詞: Phosphorus recovery, Nucleation, Crystallization, Phosphorus removal, Supersaturation, Fluidized-bed
相關次數: 點閱:116下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以TFT-LCD廠排放之高濃度含磷廢水為目標,利用人工配置之模擬含磷溶液,進行各種可能之磷酸鹽(Ca、Mg、Fe(II、III)、Al)流體化床結晶技術研究。除了大幅將含磷廢水濃度提升至1000 mg-P/L的高負荷,並操作不同進料莫耳比(Me/P)、pH值等變因,找出該技術的最佳操作條件;另針對結晶過程之行為與結晶珠之性質進行深入探討,務求確實評估應用於實廠之可行性。
    本研究顯示使用Ca2+、Mg2+、Fe2+等流體化床結晶技術技術適合用來處理低濃(100 mg-P/L)含磷溶液,結晶效率皆可達到70%以上;Fe3+、Al3+等三價金屬鹽,結晶效率亦分別有60%與45%。而使用Ca2+、Fe2+等流體化床結晶技術適合用來處理高濃(1000 mg-P/L)含磷溶液,結晶效率更可達到80%以上;另外,Mg2+、 Fe3+、Al3+等金屬鹽,結晶效率則普遍不理想,主要原因為過飽合度與其他多重干擾影響。此時使用Ca2+之最佳操作條件為:Ca/P=2.0、pHeff=6.0,使用Fe2+之最佳操作條件為:Fe/P=1.2、pHeff=6.0。將以上研究用於處理高濃(1000 mg-P/L)之實廠綜合廢液,去除效果穩定且結晶效率平均可達到70%以上,在實廠應用上具可行性。
    磷酸鈣流體化床結晶技術操作過程中,於低過飽和度時,易形成CaHPO4.2H2O的片狀結晶;於高過飽和度時,則易形成Ca5(PO4)3OH的非晶態塊狀成核。而磷酸亞鐵系統中,無論在何種條件(濃度、pH、Fe/P)下,皆易形成Fe3(PO4)2.8H2O的粒狀結晶產物。磷酸鎂、磷酸鐵與磷酸鋁流體化床結晶技術操作過程中,推估主要分別形成Mg3(PO4)2、FePO4.Fe(OH)3、AlPO4.H2O等結晶產物。

    The objective of this study is a highly phosphorus concentration of waster water from TFT-LCD factory. All potential phosphate compound (Ca, Mg, Fe(II, III), Al) will be used to treat simulated phosphorus solution by FBC technology. The Concentration of phosphorus will elevate to 1000 mg-P/L in this study. In order to find out the optimum condition of FBC technology, experiments will operate by molar ratio (Me/P) and pH value. Moreover, this study will also discuss in the behavior during crystallization process and the property of crystal pellet. All the trials will evaluate the feasibility in real factory application.
    It shows that Ca2+, Mg2+, and Fe2+ FBC technology are suitable to deal with low concentration (100 mg-P/L) phosphorus waste water, and the crystal removal efficiency is over 70%. The crystal removal efficiency of Fe3+ and Al3+ FBC technology is 60% and 45%. Ca2+、Mg2+ FBC technology are suitable to deal with high concentration (1000 mg-P/L) phosphorus waste water, and the crystal removal efficiency is over 80%. The crystal ratio of Mg2+, Fe3+, and Al3+ FBC technology is not good because the effective of supersaturation and others. The optimum condition of Ca2+ system is: Ca/P=2.0, pHeff=6.0, and the optimum condition of Fe2+ system is: Fe/P=1.2, pHeff=6.0. Research in real factory waste water (1000 mg-P/L) is based on previous studies. It demonstrates a stabilize efficiency and the average crystal removal efficiency is over 70%, and its application in real factory is feasible.
    During the FBC technology of calcium phosphate operation , CaHPO4.2H2O forms easily in lower saturation and Ca5(PO4)3OH forms easily in higher supersaturation. In addition, the morphology of CaHPO4.2H2O is flake, and Ca5(PO4)3OH is an amorphous type of lump. During the FBC technology of iron (II) phosphate operation, granule of Fe3(PO4)2.8H2O forms in all conditions (concentration, pH, Fe/P). Mg3(PO4)2 , FePO4.Fe(OH)3, and AlPO4.H2O forms during the FBC technology of magnesium phosphate, iron (III) phosphate, and aluminum phosphate operation.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第2章 文獻回顧 3 2-1 磷酸鹽的性質 3 2-2 除磷技術 5 2-3 流體化床結晶技術 6 2-3-1 流體化床結晶技術之沿革與發展現況 6 2-3-2 流體化床結晶除磷技術之文獻回顧 8 2-3-3 流體化床之操作原理 15 2-3-4 流體化床結晶技術之原理 15 2-4 晶體之成核 17 2-4-1 結晶與沉澱 17 2-4-2 成核現象 19 2-4-3 結晶成長與雙重阻力模式 20 2-4-4 平衡濃度與過飽合 22 2-4-5 介穩區 24 2-5 磷酸鹽之沉澱化學 27 2-5-1 磷酸鈣之沉澱化學 28 2-5-2 磷酸鎂之沉澱化學 31 2-5-3 磷酸亞鐵之沉澱化學 32 2-5-4 磷酸鐵之沉澱化學 33 2-5-5 磷酸鋁之沉澱化學 34 第3章 實驗設備、材料與方法 35 3-1 研究架構及流程 35 3-2 流體化床結晶實驗 36 3-2-1 實驗設備 36 3-2-2 實驗藥品 38 3-2-3 實驗步驟 38 3-3 水樣分析方法 40 3-4 結晶珠特性分析 41 3-4-1 SEM表面型態觀察 41 3-4-2 EDS元素分析 43 3-4-3 XRD晶相分析 44 第4章 結果與討論 46 4-1 磷酸鈣—流體化床結晶 46 4-1-1 磷酸鈣—最佳操作條件的取得 46 4-1-2 磷酸鈣—結晶珠表面型態觀察 52 4-1-3 磷酸鈣—結晶珠元素分析 56 4-1-3 磷酸鈣—結晶珠晶相分析 56 4-2 磷酸鎂—流體化床結晶 59 4-2-1 磷酸鎂—最佳操作條件的取得 59 4-2-2 磷酸鎂—結晶珠表面型態觀察 65 4-2-3 磷酸鎂—結晶珠元素分析 67 4-2-4 磷酸鎂—結晶珠晶相分析 67 4-3 磷酸亞鐵—流體化床結晶 69 4-3-1 磷酸亞鐵—最佳操作條件的取得 69 4-3-2 磷酸亞鐵—結晶珠表面型態觀察 74 4-3-3 磷酸亞鐵—結晶珠元素分析 75 4-3-4 磷酸亞鐵—結晶珠晶相分析 75 4-4 磷酸鐵—流體化床結晶 77 4-4-1 磷酸鐵—最佳操作條件的取得 77 4-4-2 磷酸鐵—結晶珠表面型態觀察 82 4-4-3 磷酸鐵—結晶珠元素分析 83 4-4-4 磷酸鐵—結晶珠晶相分析 83 4-5 磷酸鋁—流體化床結晶 84 4-5-1 磷酸鋁—最佳操作條件的取得 84 4-5-2 磷酸鋁—結晶珠表面型態觀察 89 4-5-3 磷酸鋁—結晶珠元素分析 90 4-5-4 磷酸鋁—結晶珠晶相分析 90 4-6 各種磷酸鹽流體化床結晶之整體效益評估 91 4-7 實廠綜合廢水研究 93 4-7-1 磷酸鈣—流體化床結晶 93 4-7-2 磷酸亞鐵—流體化床結晶 94 4-7-3 實廠廢水整體效益評估 95 第5章 結論與建議 96 5-1 結論 96 5-2 建議 97 參考文獻 98 附錄A-水力條件之設計 102 附錄B-結晶珠元素分析 108 附錄C-流體化床均相成核結晶技術 116

    Peter Piekema and Andreas Giese, phosphate recovery by the crystallisation process: experience and development, DHV Water BV
    Takaaki Maekawa et al., Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process, Water Research, Volume 29, Issue 12, December 1995, Pages 2643-2650
    M. M. Seckler et al., Calcium phosphate precipitation in a fluidized bed in relation to process conditions- A black box approach, Water Research, Volume 30, Issue 7, July 1996a, Pages 1677-1685
    M. M. Seckler et al., Phosphate removal in a fluidized bed—I. Identification of physical processes, Water Research, Volume 30, Issue 7, July 1996b, Pages 1585-1588
    M. M. Seckler et al., Phosphate removal in a fluidized bed—II. Process optimization, Water Research, Volume 30, Issue 7, July 1996c, Pages 1589-1596
    P. Battistoni et al., Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants, Water Research, Volume 34, Issue 11, 1 August 2000, Pages 3033-3041
    I. Stratful et al., Conditions influencing the precipitation of magnesium ammonium phosphate, Water Research, Volume 35, Issue 17, December 2001, Pages 4191-4199
    P. Battistoni et al., Phosphorus removal from a real anaerobic supernatant by struvite crystallization, Water Research, Volume 35, Issue 9, June 2001, Pages 2167-2178
    Elisabeth V. Münch and Keith Barr, Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams, Water Research, Volume 35, Issue 1, January 2001, Pages 151-159
    Kazuyoshi Suzuki et al., Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration, Water Research, Volume 36, Issue 12, July 2002, Pages 2991-2998
    Hoon Jang, Seon-Hong Kang, Phosphorus removal using cow bone in hydroxyapatite crystallization, Water Research, Volume 36, Issue 5, March 2002, Pages 1324-1330
    S. A. Parsons et al., Struvite formation and the fouling propensity of different materials, Water Research, Volume 36, Issue 16, September 2002a, Pages 3971-3978
    S. A. Parsons et al., Struvite formation, control and recovery, Water Research, Volume 36, Issue 16, September 2002b, Pages 3925-3940
    S. A. Parsons et al., Potential phosphorus recovery by struvite formation, Water Research, Volume 36, Issue 7, April 2002c, Pages 1834-1842
    Kazuyoshi Suzuki et al., Recovery of phosphorous from swine wastewater through crystallization, Bioresource Technology, Volume 96, Issue 14, September 2005, Pages 1544-1550
    Sun-Shean Sung and Duu-Jong Lee, Steady-state solid-flux plot of blanket in upflow suspended bed, Journal of Chinese Institute Chemical Engineers, Volume 36, No 4, 2005, Pages 385-390
    Soo-Bin Yim et al., Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag in seed material, Journal of Hazardous Materials, Volume 136, Issue 3, 25 August 2006a, Pages 690-697
    Soo-Bin Yim et al., Recovery of phosphates from wastewater using converter slag- Kinetics analysis of a completely mixed phosphorus crystallization process, Chemosphere, Volume 63, Issue 2, April 2006b, Pages 192-201
    Yonghui Song et al., Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery, Chemosphere, Volume 65, Issue 7, November 2006, Pages 1182-1187
    Yonghui Song et al., Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater, Chemosphere, Volume 69, Issue 2, September 2007a, Pages 319-324
    Yong-hui Song et al., Seed selections for crystallization of calcium phosphate for phosphorus recovery, Journal of Environmental Sciences, Volume 19, Issue 5, 2007b, Pages 591-595
    S. A. Parsons et al., Struvite crystallisation and recovery using a stainless steel structure as a seed material, Water Research, Volume 41, Issue 11, June 2007a, Pages 2449-2456
    S. A. Parsons et al., Agglomeration of struvite crystals, Water Research, Volume 41, Issue 2, January 2007b, Pages 419-425
    Kazuyoshi Suzuki et al., Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresource Technology, Volume 98, Issue 8, May 2007, Pages 1573-1578
    J.A. Wilsenach et al., Phosphate and potassium recovery from source separated urine through struvite precipitation, Water Research, Volume 41, Issue 2, January 2007, Pages 458-466
    Ipek Çelen et al., Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure, Water Research, Volume 41, Issue 8, April 2007, Pages 1689-1696
    N. Marti et al., Optimisation of sludge line management to enhance phosphorus recovery in WWTP, Water Research, Volume 42, Issue 18, November 2008, Pages 4609-4618
    N. Marti et al., Struvite precipitation assessment in anaerobic digestion processes, Chemical Engineering Journal, Volume 141, Issues 1-3, 15 July 2008, Pages 67-74
    Jon Petter Gustafsson et al., Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment, Water Research, Volume 42, Issues 1-2, January 2008, Pages 189-197
    L. Pastor et al., Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants, Bioresource Technology, Volume 99, Issue 11, July 2008, Pages 4817-4824
    Kenan Güney et al., Phosphorus recovery from digested sewage sludge as MAP by the help of metal ion separation, Water Research, Volume 42, Issue 18, November 2008, Pages 4692-4698
    Daekeun Kim et al., Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater Bioresource Technology, Volume 100, Issue 1, January 2009, Pages 74-78,
    Katsuya Kaikake et al., Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash, Waste Management, Volume 29, Issue 3, March 2009, Pages 1084-1088
    Wim Moerman et al., Phosphate removal in agro-industry: pilot and full-scale operational considerations of struvite crystallization, Water Research, Volume 43, Issue 7, April 2009, Pages 1887-1892

    李公哲,水質管理之原理,國立編譯館,台北市,1984
    楊萬發,水及廢水處理化學,茂昌,台北市,1987
    李敏華,水質化學,復漢出版社,台南市,1992
    戴怡德、陳寶祺,氟化鈣結晶動力學研究,學術委託計畫研究報告,工研院化工所/台大化工所,1994
    陳寶祺,微溶物系之沉澱與結晶,博士論文,國立台灣大學化學工程研究所,1987
    李茂松,流體化床結晶技術在無機廢水處理上應用性研究,碩士論文,中原大學化學研究所,1993
    蔡孟耕,養豬廢水以化學沉澱除磷及曝氣法除氨之探討,國立台灣大學環境工程研究所碩士論文,1993
    陳政澤,流體化床結晶反應槽回收廢水中重金屬鎘之研究,碩士論文,國立中央大學環境工程研究所,1995
    洪再生,流體化床結晶技術回收廢水重金屬銅之探討,碩士論文,國立中央大學環境工程研究所,1995
    李明政,流體化床結晶處理技術應用於養豬廢水之研究,碩士論文,國立台灣大學化學工程研究所,1997
    劉志忠,流體化床結晶法去除水中磷酸鹽之研究,碩士論文,國立中央大學環境工程研究所,1997
    顏士閔,光電業含砷廢水處理-化學沉降和流體化床法之評估,碩士論文,國立交通大學環境工程研究所,2003
    洪啟昌,次磷酸溶液處理方法之研究 -化學混凝法、吸附法與氧化法,碩士論文,國立成功大學化學工程研究所,2004
    盧郁文,高效率流體化床結晶技術除鐵之研究,碩士論文,國立成功大學化學工程研究所,2005
    黃孝儒,流體化床結晶技術處理含銅廢水之實廠研究,碩士論文,國立台灣大學化學工程研究所,2006
    何俊明,沉澱去除光電廢水中磷酸鹽之研究,碩士論文,國立台灣科技大學化學工程研究所,2008

    下載圖示 校內:2011-07-24公開
    校外:2011-07-24公開
    QR CODE