簡易檢索 / 詳目顯示

研究生: 劉威志
Liu, Wei-Zhi
論文名稱: 低溫微電漿抑制模擬慢性傷口上具抗藥性菌種及其生物膜之效用評估
Inhibition of drug-resistant pathogens and its biofilms on simulated chronic wound treated by low-temperature micro-plasma
指導教授: 廖峻德
Liao, Jiunn-Der
共同指導教授: 王德華
Wong, Tak-Wah
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 非熱微電漿抑制細菌抗藥性細菌生物膜
外文關鍵詞: Low-temperature micro-plasma, Antibacterial, Drug resistance, Biofilm
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電場激發氣體形成大氣微電漿,透過電漿產生的活性氧物質(ROS)應用於生物醫療上,在一系列的研究中包含了促進細胞增生、抑制細菌生長、促進老鼠傷口癒合、促進具有糖尿病老鼠的傷口癒合、促進大型動物傷口癒合等等,最終目的是走向促進人體慢性傷口癒合,在了解慢性傷口之所以延遲癒合的其中一項原因與病原體的生長及其生物膜的存在相關,而在傳統治療方式是利用抗生素及清創來清潔傷口,當中未滿足的需求包含了抑制抗藥性病原體及其生物膜,因此希望透過電漿處理,達到抑制抗藥性病原體及其生物膜的方式,來降低傷口負載。
    本研究電漿裝置是通入高純度He以及1% N2並以大約5 W的功率做能量源激發出電漿態,利用DIN的測量方式,獲得電漿各種產物的分析,在皮膚安全標準下,制定了5 mm的工作距離,並且在放射光譜的結果驗證了增加1% N2可以使電漿的ROS含量增加。
    生物實驗為模擬慢性傷口並分成菌落及生物膜兩種情境,在菌落實驗結果觀察到電漿處理1分鐘後產生顯著差異,並對具有抗藥性白色念珠菌分別產生6 mm及存活率24%的抑菌圈,和抗藥性金黃色葡萄球菌產生9.5 mm及存活率大約6.8%的抑菌圈,透過生長速度來判斷病原體的適應能力,結果了解電漿處理菌相較於原菌的適應能力具有顯著的增加;在抗藥能力分析中,發現抑制圈內的細菌抗藥性能力在電漿循環處理第三次時產生顯著性的下降;在生物膜實驗結果表示2分鐘電漿處理後,念珠菌及金黃色葡萄球菌的平均菌數濃度分別減少2.38個Log及1.75個Log,達到臨床定義抑菌(bacteriostatic)的標準,並具有顯著性的差異,在電子顯微鏡觀察下兩種菌的表面形貌也因電漿處理而發生變化,透過實驗結果表明,低溫微電漿可以處理慢性傷口的細菌,可望未來可以發展成為處理慢性傷口的新選擇。

    In this study, low-temperature micro-plasma with two working gases was used as the experimental equipment. First, DIN specifications were used to set the working parameters of the plasma system, so that the plasma products can be used in biomedicine. In biological experiments, drug-resistant Candida albicans and Staphylococcus aureus were analyzed the drug resistance and antibacterial effect after plasma treatment.
    Measure plasma parameters through DIN regulations. The results of measuring plasma products show that the plasma working distance was set at 5mm and was in compliance with skin safety regulations. The results of biological experiments show that plasma treatment can significantly inhibit drug-resistant Candida albicans and Staphylococcus aureus after 1 min exposure time. In drug resistance test, it was found that the resistance of Staphylococcus aureus has significantly decreased after third plasma treatment cycle. In biofilm test, Candida albicans and Staphylococcus aureus biofilms can reduce average bacterial count 2 Log after 2 min plasma exposure time. It has a significant reduction and achieves bacteriostatic. After plasma treatment, it was observed that the surface morphology of the bacteria was changed in the SEM. The results show that plasma has antibacterial ability against drug-resistant Candida albicans and Staphylococcus aureus. It may be a new way for biological antibacterial in the future.

    摘要 I Extended abstract II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論基礎與文獻回顧 4 2.1 電漿 4 2.1.1 電漿基本原理 4 2.1.2 大氣電漿 5 2.1.3 微電漿 5 2.2 DIN SPEC 91315 9 2.3 微電漿應用於急性傷口照顧 10 2.4 常見慢性傷口 12 2.4.1 慢性傷口常見抗藥性菌種 12 2.4.2 慢性傷口生物膜 14 2.5 微電漿抑制病原體 15 2.5.1 微電漿抑制真菌及細菌 15 2.5.2 微電漿抑制生物膜 18 2.6 研究目的 19 第三章 材料與方法 21 3.1 電漿系統 21 3.2 醫用電漿產物診斷方法 23 3.2.1 電漿溫度診斷方法 23 3.2.2 電漿UV輻射率診斷方法 24 3.2.3 電漿活性物質診斷方法 25 3.2.4 電漿熱能轉換效率診斷方法 25 3.3 電漿體外抑制病原體實驗方法 26 3.3.1 電漿抑制病原體範圍實驗方法 26 3.3.2 電漿處理倖存菌之生長曲線實驗方法 26 3.3.3 電漿處理倖存菌之抗藥性實驗方法 28 3.4 電漿體外抑制生物膜實驗方法 28 3.4.1 電漿抑制生物膜菌落數實驗方法 28 3.4.2 電漿處理後病原體生物膜之表面形貌分析方法 29 第四章 醫療級電漿產物診斷結果 31 4.1 電漿溫度診斷結果 31 4.2 電漿UV輻射率診斷結果 33 4.3 電漿活性物質診斷結果 34 4.4 電漿熱能轉換效率診斷結果 35 4.5 電漿產物診斷結果之綜合討論 37 第五章 電漿體外抑菌效用評估 38 5.1 電漿抑制病原體 38 5.1.1 電漿抑制病原體範圍 38 5.1.2 電漿處理倖存菌之生長曲線 41 5.1.3 電漿處理倖存菌之抗藥性 42 5.2 電漿抑制生物膜實驗 48 5.2.1 電漿抑制生物膜菌落數 48 5.2.2 電漿處理後病原體生物膜之表面形貌 50 5.3 電漿體外抑菌效用綜合討論 53 5.4 電漿影響病原體的機制圖 54 結論 56 未來展望 57 參考文獻 58

    [1] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
    [2] G. Isbary, J. Heinlin, T. Shimizu, J. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, and Y. Li, "Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial," British Journal of Dermatology, vol. 167, no. 2, pp. 404-410, 2012.
    [3] C. M. Jones, A. T. Rothermel, and D. R. Mackay, "Evidence-based medicine: wound management," Plastic and Reconstructive Surgery, vol. 140, no. 1, pp. 201e-216e, 2017.
    [4] G. Han and R. Ceilley, "Chronic wound healing: a review of current management and treatments," Advances in Therapy, vol. 34, no. 3, pp. 599-610, 2017.
    [5] Y.-K. Wu, N.-C. Cheng, and C.-M. Cheng, "Biofilms in chronic wounds: pathogenesis and diagnosis," Trends in Biotechnology, vol. 37, no. 5, pp. 505-517, 2019.
    [6] J. W. Costerton, P. S. Stewart, and E. P. Greenberg, "Bacterial biofilms: a common cause of persistent infections," Science, vol. 284, no. 5418, pp. 1318-1322, 1999.
    [7] G. McDonnell and A. D. Russell, "Antiseptics and disinfectants: activity, action, and resistance," Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147-179, 1999.
    [8] G. Schultz, T. Bjarnsholt, G. A. James, D. J. Leaper, A. J. McBain, M. Malone, P. Stoodley, T. Swanson, M. Tachi, and R. D. Wolcott, "Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds," Wound Repair and Regeneration, vol. 25, no. 5, pp. 744-757, 2017.
    [9] R. Wolcott and D. Rhoads, "A study of biofilm-based wound management in subjects with critical limb ischaemia," Journal of Wound Care, vol. 17, no. 4, pp. 145-155, 2008.
    [10] G. Isbary, G. Morfill, H. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, and B. Steffes, "A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients," British Journal of Dermatology, vol. 163, no. 1, pp. 78-82, 2010.
    [11] K.-N. Lee, K.-h. Paek, W.-T. Ju, and Y.-H. Lee, "Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen," Journal of Microbiology, vol. 44, no. 3, pp. 269-275, 2006.
    [12] A. Mai-Prochnow, A. B. Murphy, K. M. McLean, M. G. Kong, and K. K. Ostrikov, "Atmospheric pressure plasmas: infection control and bacterial responses," International Journal of Antimicrobial Agents, vol. 43, no. 6, pp. 508-517, 2014.
    [13] L. Tonks and I. Langmuir, "Note on" Oscillations in Ionized Gases"," Physical Review, vol. 33, no. 6, p. 990, 1929.
    [14] K. Barman, D. Behmani, M. Mudgal, S. Bhattacharjee, R. Rane, and S. K. Nema, "Characteristics of atmospheric pressure micro-plasma jets in two different modes of excitation depending upon wave amplitude and frequency," Plasma Research Express, vol. 2, no. 2, p. 025007, 2020.
    [15] M. Zenker, "Argon plasma coagulation," GMS Krankenhaushygiene Interdisziplinar, vol. 3, no. 1, 2008.
    [16] X. Lu, M. Laroussi, and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Science and Technology, vol. 21, no. 3, p. 034005, 2012.
    [17] "DIN SPEC 91315: General requirements for plasma sources," DIN German Institute for Standardization, 2014.
    [18] M. S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.-D. Weltmann, S. Emmert, T. von Woedtke, and R. Ahmed, "Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED," Clinical Plasma Medicine, vol. 4, no. 2, pp. 35-45, 2016.
    [19] R. Breathnach, K. A. McDonnell, A. Chebbi, J. J. Callanan, and D. P. Dowling, "Evaluation of the effectiveness of kINPen Med plasma jet and bioactive agent therapy in a rat model of wound healing," Biointerphases, vol. 13, no. 5, p. 051002, 2018.
    [20] S. Arndt, P. Unger, E. Wacker, T. Shimizu, J. Heinlin, Y.-F. Li, H. M. Thomas, G. E. Morfill, J. L. Zimmermann, and A.-K. Bosserhoff, "Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo," Plos One, vol. 8, no. 11, p. e79325, 2013.
    [21] 林峰正, "符合DIN規範之非熱微電漿裝置進行豬傷口模式之安全評估," 成功大學材料科學及工程學系碩士學位論文,成功大學, 2016.
    [22] 林幸二, "非熱微電漿系統之抑菌效用評估-使用細菌於模擬傷口之培養基模型," 國立成功大學材料科學及工程學系碩士學位論文,成功大學, 2017.
    [23] S. Morbach, H. Furchert, U. Gröblinghoff, H. Hoffmeier, K. Kersten, G.-T. Klauke, U. Klemp, T. Roden, A. Icks, and B. Haastert, "Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade," Diabetes Care, vol. 35, no. 10, pp. 2021-2027, 2012.
    [24] W. J. Jeffcoate, L. Vileikyte, E. J. Boyko, D. G. Armstrong, and A. J. Boulton, "Current challenges and opportunities in the prevention and management of diabetic foot ulcers," Diabetes Care, vol. 41, no. 4, pp. 645-652, 2018.
    [25] R. Warriner and R. Burrell, "Infection and the chronic wound: a focus on silver," Advances in Skin and Wound Care, vol. 18, no. 8, pp. 2-12, 2005.
    [26] C. Wiegand, O. Beier, K. Horn, A. Pfuch, T. Tölke, U.-C. Hipler, and A. Schimanski, "Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures," Skin Pharmacology and Physiology, vol. 27, no. 1, pp. 25-35, 2014.
    [27] H. F. Chambers and F. R. DeLeo, "Waves of resistance: Staphylococcus aureus in the antibiotic era," Nature Reviews Microbiology, vol. 7, no. 9, pp. 629-641, 2009.
    [28] M. M. McNeil, Nash, S. L., Hajjeh, R. A., Phelan, M. A., Conn, L. A., Plikaytis, B. D., and Warnock, D. W., "Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997," Clinical Infectious Diseases 33.5 (2001): 641-647., 2001.
    [29] M. A. Pfaller and D. J. Diekema, "Epidemiology of invasive candidiasis: a persistent public health problem," Clinical Microbiology Reviews, vol. 20, no. 1, pp. 133-163, 2007.
    [30] H. F. Chien, Chen, C. P., Chen, Y. C., Chang, P. H., Tsai, T., and Chen, C. T., "The use of chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates.," International Journal of Molecular Sciences 14.4, 2013.
    [31] J. Costerton, R. Irvin, K.-J. Cheng, and I. Sutherland, "The role of bacterial surface structures in pathogenesis," CRC Critical Reviews in Microbiology, vol. 8, no. 4, pp. 303-338, 1981.
    [32] P. Infante-Cossio, R. Martinez-de-Fuentes, E. Torres-Carranza, and J. Gutierrez-Perez, "Inflammatory papillary hyperplasia of the palate: treatment with carbon dioxide laser, followed by restoration with an implant-supported prosthesis," British Journal of Oral and Maxillofacial Surgery, vol. 45, no. 8, pp. 658-660, 2007.
    [33] C. A. Kumamoto and M. D. Vinces, "Alternative Candida albicans lifestyles: growth on surfaces," Annu. Rev. Microbiol., vol. 59, pp. 113-133, 2005.
    [34] A. F. Falabella, "Debridement and wound bed preparation," Dermatologic Therapy, vol. 19, no. 6, pp. 317-325, 2006.
    [35] G. Ramage, E. Mowat, B. Jones, C. Williams, and J. Lopez-Ribot, "Our current understanding of fungal biofilms," Critical Reviews in Microbiology, vol. 35, no. 4, pp. 340-355, 2009.
    [36] P. P. Sedghizadeh, M.-T. Chen, C. Schaudinn, A. Gorur, and C. Jiang, "Inactivation kinetics study of an atmospheric-pressure cold-plasma jet against pathogenic microorganisms," IEEE Transactions on Plasma Science, vol. 40, no. 11, pp. 2879-2882, 2012.
    [37] G. Fridman, A. D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V. N. Vasilets, H. Ayan, and G. Friedman, "Comparison of direct and indirect effects of non‐thermal atmospheric‐pressure plasma on bacteria," Plasma Processes and Polymers, vol. 4, no. 4, pp. 370-375, 2007.
    [38] P. Bruggeman, M. J. Kushner, B. R. Locke, J. G. Gardeniers, W. Graham, D. B. Graves, R. Hofman-Caris, D. Maric, J. P. Reid, and E. Ceriani, "Plasma–liquid interactions: a review and roadmap," Plasma Sources Science and Technology, vol. 25, no. 5, p. 053002, 2016.
    [39] K. G. Kostov, A. C. Borges, C. Y. Koga-Ito, T. M. C. Nishime, V. Prysiazhnyi, and R. Y. Honda, "Inactivation of Candida albicans by cold atmospheric pressure plasma jet," IEEE Transactions on Plasma Science, vol. 43, no. 3, pp. 770-775, 2014.
    [40] S. Güçeri, A. Fridman, K. Gibson, and C. Haas, Plasma assisted decontamination of biological and chemical agents. Springer, 2008.
    [41] S. Rupf, A. Lehmann, M. Hannig, B. Schäfer, A. Schubert, U. Feldmann, and A. Schindler, "Killing of adherent oral microbes by a non-thermal atmospheric plasma jet," Journal of Medical Microbiology, vol. 59, no. 2, pp. 206-212, 2010.
    [42] I. Koban, R. Matthes, N.-O. Hübner, A. Welk, P. Meisel, B. Holtfreter, R. Sietmann, E. Kindel, K.-D. Weltmann, and A. Kramer, "Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet," New Journal of Physics, vol. 12, no. 7, p. 073039, 2010.
    [43] C.-C. Weng, J.-D. Liao, H.-H. Chen, T.-Y. Lin, and C.-L. Huang, "Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution," International Journal of Radiation Biology, vol. 87, no. 9, pp. 936-943, 2011.
    [44] A. Bourdon, T. Darny, F. Pechereau, J.-M. Pouvesle, P. Viegas, S. Iséni, and E. Robert, "Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture," Plasma Sources Science and Technology, vol. 25, no. 3, p. 035002, 2016.
    [45] A. C. Borges, T. M. C. Nishime, K. G. Kostov, G. d. M. G. Lima, A. V. L. Gontijo, J. N. M. M. de Carvalho, R. Y. Honda, and C. Y. Koga-Ito, "Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits," Clinical Plasma Medicine, vol. 7, pp. 9-15, 2017.
    [46] O. Lunov, V. Zablotskii, O. Churpita, A. Jäger, L. Polívka, E. Syková, A. Dejneka, and Š. Kubinová, "The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma," Biomaterials, vol. 82, pp. 71-83, 2016.
    [47] S. P. Saville, A. L. Lazzell, A. P. Bryant, A. Fretzen, A. Monreal, E. O. Solberg, C. Monteagudo, J. L. Lopez-Ribot, and G. T. Milne, "Inhibition of filamentation can be used to treat disseminated candidiasis," Antimicrobial Agents and Chemotherapy, vol. 50, no. 10, pp. 3312-3316, 2006.
    [48] G. A. Pankey and L. Sabath, "Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections," Clinical Infectious Diseases, vol. 38, no. 6, pp. 864-870, 2004.
    [49] I. C. o. N.-I. R. Protection, "Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation)," Health Physics, vol. 87, no. 2, pp. 171-186, 2004.
    [50] A. Osman, H. A. Goda, and M. Sitohy, "Storage stability of minced beef supplemented with chickpea legumin at 4 C as a potential substitute for nisin," Lebensmittel-Wissenschaft and Technologie, vol. 93, pp. 434-441, 2018.
    [51] L. D. Liebowitz, H. R. Ashbee, E. G. V. Evans, Y. Chong, N. Mallatova, M. Zaidi, D. Gibbs, and G. A. S. Group, "A two year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion," Diagnostic Microbiology and Infectious Disease, vol. 40, no. 1-2, pp. 27-33, 2001.
    [52] A. Felten, B. Grandry, P. H. Lagrange, and I. Casin, "Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test," Journal of Clinical Microbiology, vol. 40, no. 8, pp. 2766-2771, 2002.
    [53] H.-F. Chien, C.-P. Chen, Y.-C. Chen, P.-H. Chang, T. Tsai, and C.-T. Chen, "The use of chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates," International Journal of Molecular Sciences, vol. 14, no. 4, pp. 7445-7456, 2013.
    [54] P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig, "Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line," The Journal of Cell Biology, vol. 106, no. 3, pp. 761-771, 1988.
    [55] V. Leveille and S. Coulombe, "Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species," Plasma Sources Science and Technology, vol. 14, no. 3, p. 467, 2005.
    [56] M. Laroussi, C. Tendero, X. Lu, S. Alla, and W. L. Hynes, "Inactivation of bacteria by the plasma pencil," Plasma Processes and Polymers, vol. 3, no. 6‐7, pp. 470-473, 2006.
    [57] E. Tyczkowska-Sieroń, T. Kałużewski, M. Grabiec, B. Kałużewski, and J. Tyczkowski, "Genotypic and Phenotypic Changes in Candida albicans as a Result of Cold Plasma Treatment," International Journal of Molecular Sciences, vol. 21, no. 21, p. 8100, 2020.
    [58] A. H. Melnyk, A. Wong, and R. Kassen, "The fitness costs of antibiotic resistance mutations," Evolutionary Applications, vol. 8, no. 3, pp. 273-283, 2015.
    [59] D. I. Andersson and D. Hughes, "Antibiotic resistance and its cost: is it possible to reverse resistance?," Nature Reviews Microbiology, vol. 8, no. 4, pp. 260-271, 2010.
    [60] B. Guo, K. Abdelraouf, K. R. Ledesma, M. Nikolaou, and V. H. Tam, "Predicting bacterial fitness cost associated with drug resistance," Journal of Antimicrobial Chemotherapy, vol. 67, no. 4, pp. 928-932, 2012.
    [61] A. C. Gerstein, A. Rosenberg, I. Hecht, and J. Berman, "diskImageR: quantification of resistance and tolerance to antimicrobial drugs using disk diffusion assays," Microbiology, vol. 162, no. 7, p. 1059, 2016.
    [62] X. Liao, P. Cullen, D. Liu, A. I. Muhammad, S. Chen, X. Ye, J. Wang, and T. Ding, "Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma," Science of the Total Environment, vol. 645, pp. 1287-1295, 2018.
    [63] T.-W. Wong, S.-Z. Liao, W.-C. Ko, C.-J. Wu, S. B. Wu, Y.-C. Chuang, and I. Huang, "Indocyanine Green—Mediated Photodynamic Therapy Reduces Methicillin-Resistant Staphylococcus aureus Drug Resistance," Journal of clinical medicine, vol. 8, no. 3, p. 411, 2019.
    [64] J. D. Mehlhoff, F. W. Stearns, D. Rohm, B. Wang, E.-Y. Tsou, N. Dutta, M.-H. Hsiao, C. E. Gonzalez, A. F. Rubin, and M. Ostermeier, "Collateral fitness effects of mutations," Proceedings of the National Academy of Sciences, vol. 117, no. 21, pp. 11597-11607, 2020.
    [65] G. G. Zhanel, D. J. Hoban, and G. K. Harding, "Subinhibitory antimicrobial concentrations: a review of in vitro and in vivo data," Canadian Journal of Infectious Diseases, vol. 3, no. 4, pp. 193-201, 1992.
    [66] R. Edwards and K. G. Harding, "Bacteria and wound healing," Current Opinion in infectious Diseases, vol. 17, no. 2, pp. 91-96, 2004.
    [67] T. Banitz, L. Y. Wick, I. Fetzer, K. Frank, H. Harms, and K. Johst, "Dispersal networks for enhancing bacterial degradation in heterogeneous environments," Environmental Pollution, vol. 159, no. 10, pp. 2781-2788, 2011.
    [68] G. Carrano, S. Paulone, L. Lainz, M.-J. Sevilla, E. Blasi, and M.-D. Moragues, "Anti-Candida albicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans," Revista Iberoamericana de Micologia, vol. 36, no. 1, pp. 9-16, 2019.
    [69] R. A. Calderone and W. A. Fonzi, "Virulence factors of Candida albicans," Trends in Microbiology, vol. 9, no. 7, pp. 327-335, 2001.
    [70] Y.-L. Yang, "Virulence factors of Candida species," Journal of Microbiology Immunology and Infection, vol. 36, no. 4, pp. 223-228, 2003.
    [71] Y. Lu, C. Su, and H. Liu, "Candida albicans hyphal initiation and elongation," Trends in Microbiology, vol. 22, no. 12, pp. 707-714, 2014.
    [72] K. Becker, W. Zhu, and J. Lopez, "Microplasmas: Environmental and biological applications," Plasma Phys. Controlled Fusion, vol. 47, pp. B513-B523, 2005.
    [73] L. F. Gaunt, C. B. Beggs, and G. E. Georghiou, "Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review," IEEE Transactions on Plasma Science, vol. 34, no. 4, pp. 1257-1269, 2006.
    [74] J. G. Birmingham, "Mechanisms of bacterial spore deactivation using ambient pressure nonthermal discharges," IEEE Transactions on Plasma Science, vol. 32, no. 4, pp. 1526-1531, 2004.
    [75] Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, and J. Fang, "A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage," Applied Physics Letters, vol. 102, no. 20, p. 203701, 2013.

    無法下載圖示 校內:2026-08-23公開
    校外:2026-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE