簡易檢索 / 詳目顯示

研究生: 趙偉暠
Chao, Wei-Hao
論文名稱: 旋渦式超音波應用於清除生物膜可行性之研究
Feasibility of Using Acoustic Vortex for Biofilms Dislodging
指導教授: 范景翔
Fan, Ching-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 107
中文關鍵詞: 超聲波聲學渦流生物膜聲流協同治療
外文關鍵詞: ultrasound, acoustic vortex, biofilm, acoustic streaming, synergistic therapy
相關次數: 點閱:889下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦於探討聲學渦流技術 (acoustic vortex, AVX) 在清除生物膜方面的應用可行性,並驗證其潛在的臨床價值。由於生物膜具有獨特的結構與抗藥性,長期以來成為人工植入物感染及慢性細菌感染治療中的主要挑戰。隨著人口老齡化,人工關節等植入物的需求不斷增加,對於更高效且安全的感染治療技術需求愈加迫切。然而,傳統物理或化學方法在清除生物膜時效果有限,且通常伴隨高侵入性、手術複雜性與高成本。聚焦式超音波 (focused ultrasound, FUS) 作為一種新興技術,在清除生物膜方面雖已受到關注,但仍存在明顯限制。例如,低強度聚焦超音波需結合微氣泡或特殊粒子才能提升清除效果,但這些外來物可能帶來生物相容性風險,且微氣泡產生的慣性穴蝕效應可能損傷周圍健康組織。高強度聚焦超音波能產生較強的聲流,也可能產生慣性穴蝕效應,雖具有較強的清除能力,但其高聲壓( > 3.5 MPa)、高機械指數也伴隨更高的生物安全風險。AVX是一種具有螺旋相位結構的聲波,透過特定相位調控或螺旋形狀透鏡的設計,使聲波攜帶角動量,進而導致聲波波前產生干涉,並在橫向聲場中呈現環狀能量分佈,此類聲場的特性可於液體中誘導環狀流動,進一步施加旋轉力於懸浮的微粒或細胞。與FUS相比,相同聲學參數之AVX理論上應能產生更強的旋轉聲流與剪切力。本研究旨在利用AVX技術,以相較於FUS更低的聲學參數,實現高效清除生物膜的效果並深入了解其清除生物膜的作用機制。同時,我們進一步探討其結合抗生素後的增效作用與潛在影響。
    本研究首先使用實驗室自行製作的FUS與AVX兩用式超音波探頭,測試其性能與工作能力。接著,以 E. coli ATCC13706 作為生物膜培養的模型菌株,建立體外生物膜疾病模型,並利用超音波探頭進行生物膜清除實驗。結果顯示,在AVX模式下能在聚焦區產生沿中軸直進並快速旋轉的向心聲流,旋轉的速度可透過調整AVX之聲壓及工作週期控制,然而FUS組僅觀察到由中軸直進並向外散開的聲流,且在相同聲學參數下其流速僅有達到AVX的 0.4倍。生物膜清除實驗中,本研究發現調整聲壓比調整工作週期可以更顯著提升清除效果。當聲壓達 1.75 MPa、工作週期為 10%,且治療時間為 3 分鐘時,在SYTO9染色下之生物膜清除面積可達90.5 ± 20%。而在相同參數下,FUS模式僅能清除7 ± 6.2%之生物膜,需將聲壓提高至 4 MPa 才能產生明顯效果(91.3 ± 10.5%)。本研究排除了熱效應的影響,並進一步分析其物理機制發現慣性穴蝕效應強度與生物膜清除的相關性僅有0.36,聲流則高達0.97,說明聲流為關鍵影響因素。此外,我們最後結合AVX與抗生素進行協同生物膜清除實驗,結果顯示,此偕同清除技術能抑制生物膜的生長達12小時,增加生物膜上的5.2倍死菌比例,並降低培養液中84%的細菌濃度。未來將進一步AVX技術應用於動物體內生物膜模型中,驗證其可行性與有效性,同時評估綜合治療的效果及其安全性,以期推動此技術在臨床上的應用。

    This study focuses on the feasibility of applying acoustic vortex (AVX) technology for biofilm removal and evaluates its potential clinical value. Biofilms, with their unique structure and drug resistance, have long posed major challenges in the treatment of implant-associated and chronic bacterial infections. With the aging population driving the demand for implants such as artificial joints, there is an increasing need for more efficient and safe infection treatment technologies. However, conventional physical and chemical methods are limited in their effectiveness against biofilms and are often associated with high invasiveness, surgical complexity, and high costs. Focused ultrasound (FUS) has emerged as a novel technique for biofilm removal but still faces significant limitations. For instance, low-intensity FUS requires the addition of microbubbles (MBs) or special particles to enhance its biofilm removal effects. However, these foreign agents may pose biocompatibility risks, and the inertial cavitation effects generated by MBs could damage surrounding healthy tissues. High-intensity FUS can produce strong acoustic streaming and inertial cavitation effects, offering better removal capabilities, but its high acoustic pressure (>3.5 MPa) and mechanical index carry higher bio-safety risks. AVX, characterized by its helical phase structure, imparts angular momentum to sound waves through specific phase modulation or spiral-shaped lens designs. This creates interference in the wavefront and generates a ring-shaped energy distribution in the transverse acoustic field. These characteristics can induce circular fluid flow in liquids, exerting rotational forces on suspended particles or cells. Compared to FUS, AVX is theoretically capable of producing stronger rotational acoustic streaming and shear forces under the same acoustic parameters.
    This study aims to utilize AVX technology to achieve efficient biofilm removal with lower acoustic parameters compared to FUS and to explore the mechanisms underlying biofilm removal. Furthermore, we investigate its synergistic effects and potential impacts when combined with antibiotics. First, a custom-designed dual-mode ultrasound probe for FUS and AVX was tested for performance and operational capability. Using E. coli ATCC13706 as a model strain, an in vitro biofilm model was established for biofilm removal experiments. Results showed that under AVX mode, centripetal acoustic streaming was generated along the axial direction with rapid rotation, and the rotational speed could be controlled by adjusting the acoustic pressure (AP) and duty cycle (DC). In contrast, the FUS group exhibited only outward-dispersing axial acoustic streaming, with a flow rate reaching only 0.4 times that of AVX under the same acoustic parameters. In biofilm removal experiments, we observed that adjusting the AP had a more significant impact on removal efficacy than adjusting the DC. At an AP of 1.75 MPa, DC of 10%, and treatment duration of 3 minutes, biofilm removal area reached 90.5 ± 20% as stained by SYTO9. Under the same parameters, the FUS mode could only remove 7 ± 6.2% of the biofilm, requiring an AP increase to 4 MPa to achieve a significant effect (91.3 ± 10.5%). This study excluded thermal effects and further analyzed the physical mechanisms, revealing that inertial cavitation correlated only weakly (0.36) with biofilm removal, while acoustic streaming showed a strong correlation (0.97), identifying it as the key influencing factor. Lastly, synergistic experiments combining AVX with antibiotics demonstrated that this combined technique inhibited biofilm growth for up to 12 hours, increased the proportion of dead bacteria within the biofilm by 5.2-fold, and reduced bacterial concentration in the culture medium by 84%.
    Future work will focus on applying AVX technology to in vivo biofilm models to verify its feasibility and efficacy. Additionally, we will assess the outcomes and safety of combined treatments, aiming to advance the clinical application of this technology.

    摘要 i Abstract iii 謝誌 v Content vi List of tables ix List of figures x List of Abbreviations xiv Chapter 1 Introduction 1 1.1 Biofilms infection 1 1.2 Prosthetic joint infections (PJIs) 1 1.2.1 Current treatment methods for PJI 2 1.3 Application of ultrasound in biofilms removal 4 1.3.1 Mechanical effects 5 1.3.2 Thermal effects 6 1.3.3 Research results of ultrasound treatment of biofilms 7 1.3.4 Microbubbles and particles enhance ultrasound effect on biofilms 8 1.4 Acoustic vortex (AVX) ultrasound and its potential 11 1.4.1 Introduction to AVX 11 1.4.2 Potential of AVX to dislodge biofilms 14 1.5 Objective and scope of the study 15 Chapter 2 Materials and Methods 17 2.1 AVX probe 17 2.1.1 The design of AVX probe 17 2.1.2 Measurement of acoustic field 18 2.1.3 Measurement of acoustic streaming 19 2.2 Bacteria experiments 21 2.2.1 Biofilms model establishment and cultivation 21 2.2.2 Antibiotic testing 22 2.2.3 Staining methods 23 2.2.4 Quantification of fluorescence images 25 2.2.5 CFU method 25 2.3 Ultrasound experiments 26 2.3.1 Biofilms disruption threshold measurement 26 2.4 AVX combined with antibiotic therapy 27 2.4.1 Polydimethylsiloxane (PDMS) model establishment 27 2.4.2 Synergistic Treatment of Biofilms Using AVX and Kanamycin 28 2.4.3 The experiment for the in-depth analysis of the combined treatment's effects on both biofilm and suspension 29 2.5 The mechanism of ultrasound in biofilm removal 29 2.5.1 Thermal effect 30 2.5.2 Passive cavitation detection 30 2.6 Statistical Analysis 32 Chapter 3 Results 33 3.1 AVX probe 33 3.1.1 Acoustic field measurement 33 3.1.2 Acoustic streaming measurements 34 3.2 Bacteria experiments 36 3.2.1 Effects of different environments on biofilms 37 3.2.2 Effects of culture time on biofilms 38 3.2.3 Antibiotic testing 43 3.3 US experiments on biofilms removal 45 3.3.1 The effectiveness of AVX in biofilm removal under various DC 45 3.3.2 The effectiveness of AVX in biofilm removal under various AP 48 3.3.3 AVX Comparison with FUS 53 3.3.4 Brief summary 56 3.4 AVX combined with antibiotic therapy 57 3.4.1 The impact on biofilms 57 3.4.2 The impact on suspension 62 Chapter 4 Discussion 64 4.1 Mechanism of US in biofilms removal 64 4.1.1 AVX 64 4.1.2 FUS 68 Chapter 5 Conclusion and Future Work 72 5.1 Conclusion 72 5.2 Future work 73 References 74

    [1] R. J. C. Mclean, J. S. Lam, and L. L. Graham, “Training the biofilm generation - A Tribute to J. W. Costerton,” J Bacteriol, vol. 194, no. 24, pp. 6706–6711, Oct. 2012, doi: 10.1128/JB.01252-12/ASSET/2E3104C4-547E-4BF8-889E-BA37E3276B14/ASSETS/GRAPHIC/ZJB9990920950004.JPEG.
    [2] R. D. Wolcott and G. D. Ehrlich, “Biofilms and Chronic Infections,” JAMA, vol. 299, no. 22, pp. 2682–2684, Jun. 2008, doi: 10.1001/JAMA.299.22.2682.
    [3] T. Bjarnsholt, “The role of bacterial biofilms in chronic infections.,” APMIS Suppl, no. 136, pp. 1–51, 2013, doi: 10.1111/apm.12099.
    [4] S. Mendhe, A. Badge, S. Ugemuge, and D. Chandi, “Impact of Biofilms on Chronic Infections and Medical Challenges,” Cureus, Nov. 2023, doi: 10.7759/cureus.48204.
    [5] N. Høiby et al., “ESCMID* guideline for the diagnosis and treatment of biofilm infections 2014,” Clinical Microbiology and Infection, vol. 21, no. S1, pp. S1–S25, May 2015, doi: 10.1016/j.cmi.2014.10.024.
    [6] T. Bjarnsholt et al., “Quorum Sensing and Virulence of Pseudomonas aeruginosa during Lung Infection of Cystic Fibrosis Patients,” PLoS One, vol. 5, no. 4, p. e10115, 2010, doi: 10.1371/JOURNAL.PONE.0010115.
    [7] T. Bjarnsholt et al., “Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients,” Pediatr Pulmonol, vol. 44, no. 6, pp. 547–558, Jun. 2009, doi: 10.1002/PPUL.21011.
    [8] H. O. Gbejuade, A. M. Lovering, and J. C. Webb, “The role of microbial biofilms in prosthetic joint infections: A review,” Apr. 01, 2015, Informa Healthcare. doi: 10.3109/17453674.2014.966290.
    [9] A. Visperas, D. Santana, A. K. Klika, C. A. Higuera-Rueda, and N. S. Piuzzi, “Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies,” Jul. 01, 2022, John Wiley and Sons Inc. doi: 10.1002/jor.25345.
    [10] C. Jacqueline and J. Caillon, “Impact of bacterial biofilm on the treatment of prosthetic joint infections,” Journal of Antimicrobial Chemotherapy, vol. 69, no. SUPPL1, 2014, doi: 10.1093/jac/dku254.
    [11] A. Tzeng et al., “Treating periprosthetic joint infections as biofilms: Key diagnosis and management strategies,” Diagn Microbiol Infect Dis, vol. 81, no. 3, pp. 192–200, Mar. 2015, doi: 10.1016/j.diagmicrobio.2014.08.018.
    [12] W. Zimmerli and C. Moser, “Pathogenesis and treatment concepts of orthopaedic biofilm infections,” Jul. 2012. doi: 10.1111/j.1574-695X.2012.00938.x.
    [13] Z. Song, L. Borgwardt, N. Høiby, H. Wu, T. S. Sørensen, and A. Borgwardt, “Prosthesis infections after orthopedic joint replacement: The possible role of bacterial biofilms,” 2013, Open Medical Publishing. doi: 10.4081/or.2013.e14.
    [14] Y. Zhu, F. Zhang, W. Chen, S. Liu, Q. Zhang, and Y. Zhang, “Risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis,” Journal of Hospital Infection, vol. 89, no. 2, pp. 82–89, Feb. 2015, doi: 10.1016/J.JHIN.2014.10.008.
    [15] E. J. Weinstein et al., “Incidence, Microbiological Studies, and Factors Associated With Prosthetic Joint Infection After Total Knee Arthroplasty,” JAMA Netw Open, vol. 6, no. 10, pp. e2340457–e2340457, Oct. 2023, doi: 10.1001/JAMANETWORKOPEN.2023.40457.
    [16] T. Li, H. Zhang, P. K. Chan, W. C. Fung, H. Fu, and K. Y. Chiu, “Risk factors associated with surgical site infections following joint replacement surgery: a narrative review,” Arthroplasty, vol. 4, no. 1, pp. 1–8, Dec. 2022, doi: 10.1186/S42836-022-00113-Y/TABLES/1.
    [17] T. J. A. van Schaik, M. P. A. van Meer, L. D. de Jong, J. H. M. Goosen, M. P. Somford, and J. L. C. van Susante, “No difference in bacterial contamination of hip capsule sutures and control sutures in hip arthroplasty surgery,” Antimicrob Resist Infect Control, vol. 12, no. 1, pp. 1–6, Dec. 2023, doi: 10.1186/S13756-023-01305-0/TABLES/3.
    [18] A. M. Martini, B. S. Moricz, L. J. Woods, and B. D. Jones, “Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis,” Microbiol Spectr, vol. 9, no. 3, Dec. 2021, doi: 10.1128/spectrum.01752-21.
    [19] A. Fischbacher and O. Borens, “Prosthetic-joint infections: Mortality over the last 10 years,” J Bone Jt Infect, vol. 4, no. 4, pp. 198–202, Sep. 2019, doi: 10.7150/JBJI.35428.
    [20] G. Grammatopoulos et al., “Functional outcome of debridement, antibiotics and implant retention in periprosthetic joint infection involving the hip,” Bone and Joint Journal, vol. 99B, no. 5, pp. 614–622, May 2017, doi: 10.1302/0301-620X.99B5.BJJ-2016-0562.R2/LETTERTOEDITOR.
    [21] H. R. Choi, F. Von Knoch, D. Zurakowski, S. B. Nelson, and H. Malchau, “Can implant retention be recommended for treatment of infected TKA?,” Clin Orthop Relat Res, vol. 469, no. 4, pp. 961–969, Nov. 2011, doi: 10.1007/S11999-010-1679-8/METRICS.
    [22] D. N. Fisman, D. T. Reilly, A. W. Karchmer, and S. J. Goldie, “Clinical effectiveness and cost-effectiveness of 2 management strategies for infected total hip arthroplasty in the elderly,” Clinical Infectious Diseases, vol. 32, no. 3, pp. 419–430, Feb. 2001, doi: 10.1086/318502/2/M_32-3-419-FIG001.GIF.
    [23] C. fan Zhang et al., “Debridement, Antibiotics, and Implant Retention for Acute Periprosthetic Joint Infection,” Orthop Surg, vol. 12, no. 2, pp. 463–470, Apr. 2020, doi: 10.1111/OS.12641.
    [24] T. K. Fehring et al., “Failure of irrigation and débridement for early postoperative periprosthetic infection knee,” Clin Orthop Relat Res, vol. 471, no. 1, pp. 250–257, May 2013, doi: 10.1007/S11999-012-2373-9/METRICS.
    [25] R. Sousa and M. A. Abreu, “Treatment of Prosthetic Joint Infection with Debridement, Antibiotics and Irrigation with Implant Retention - a Narrative Review,” J Bone Jt Infect, vol. 3, no. 3, pp. 108–117, Jun. 2018, doi: 10.7150/JBJI.24285.
    [26] D. A. Zaruta, B. Qiu, A. Y. Liu, and B. F. Ricciardi, “Indications and Guidelines for Debridement and Implant Retention for Periprosthetic Hip and Knee Infection,” Curr Rev Musculoskelet Med, vol. 11, no. 3, pp. 347–356, Sep. 2018, doi: 10.1007/S12178-018-9497-9/METRICS.
    [27] G. K. Triantafyllopoulos, V. Soranoglou, S. G. Memtsoudis, and L. A. Poultsides, “Implant retention after acute and hematogenous periprosthetic hip and knee infections: Whom, when and how?,” World J Orthop, vol. 7, no. 9, pp. 546–52, Sep. 2016, doi: 10.5312/wjo.v7.i9.546.
    [28] D. G. Deckey, Z. K. Christopher, J. S. Bingham, and M. J. Spangehl, “Principles of mechanical and chemical debridement with implant retention,” Arthroplasty, vol. 5, no. 1, pp. 1–8, Dec. 2023, doi: 10.1186/S42836-023-00170-X/TABLES/1.
    [29] T. Kalteis et al., “Contaminant seeding in bone by different irrigation methods: An experimental study,” J Orthop Trauma, vol. 19, no. 9, pp. 591–596, Oct. 2005, doi: 10.1097/01.BOT.0000174032.91936.4A.
    [30] J. O. Anglen, S. Apostoles, G. Christensen, and B. Gainor, “The efficacy of various irrigation solutions in removing slime-producing Staphylococcus,” J Orthop Trauma, vol. 8, no. 5, pp. 390–396, 1994, doi: 10.1097/00005131-199410000-00004.
    [31] M. Bartoszewicz, A. Rygiel, M. Krzemiński, and A. Przondo-Mordarska, “Penetration of a selected antibiotic and antiseptic into a biofilm formed on orthopedic steel implants.,” Ortop Traumatol Rehabil, vol. 9, no. 3, pp. 310–318, May 2007, Accessed: Nov. 14, 2024. [Online]. Available: https://europepmc.org/article/med/17721429
    [32] F. W. Moussa, B. J. Gainor, J. O. Anglen, G. Christensen, and W. A. Simpson, “Disinfecting agents for removing adherent bacteria from orthopaedic hardware,” Clin Orthop Relat Res, vol. 329, no. 329, pp. 255–262, 1996, doi: 10.1097/00003086-199608000-00032.
    [33] D. C. Smith, R. Maiman, E. M. Schwechter, S. J. Kim, and D. M. Hirsh, “Optimal Irrigation and Debridement of Infected Total Joint Implants with Chlorhexidine Gluconate,” J Arthroplasty, vol. 30, no. 10, pp. 1820–1822, Oct. 2015, doi: 10.1016/J.ARTH.2015.05.005.
    [34] T. Bjarnsholt et al., “Antibiofilm Properties of Acetic Acid,” Adv Wound Care (New Rochelle), vol. 4, no. 7, pp. 363–372, Jul. 2015, doi: 10.1089/WOUND.2014.0554.
    [35] R. L. Williams, W. N. Ayre, W. S. Khan, A. Mehta, and R. Morgan-Jones, “Acetic Acid as Part of a Debridement Protocol During Revision Total Knee Arthroplasty,” J Arthroplasty, vol. 32, no. 3, pp. 953–957, Mar. 2017, doi: 10.1016/J.ARTH.2016.09.010.
    [36] C. S. Estes, C. P. Beauchamp, H. D. Clarke, and M. J. Spangehl, “A two-stage retention débridement protocol for acute periprosthetic joint infections,” Clin Orthop Relat Res, vol. 468, no. 8, pp. 2029–2038, 2010, doi: 10.1007/S11999-010-1293-9.
    [37] L. A. Whiteside, M. Peppers, T. A. Nayfeh, and M. E. Roy, “Methicillin-resistant Staphylococcus aureus in TKA treated with revision and direct intra-articular antibiotic infusion,” Clin Orthop Relat Res, vol. 469, no. 1, pp. 26–33, 2011, doi: 10.1007/S11999-010-1313-9.
    [38] U. Römling and C. Balsalobre, “Biofilm infections, their resilience to therapy and innovative treatment strategies,” J Intern Med, vol. 272, no. 6, pp. 541–561, Dec. 2012, doi: 10.1111/JOIM.12004.
    [39] J. B. Kaplan, “Biofilm Matrix-Degrading Enzymes,” Methods in Molecular Biology, vol. 1147, pp. 203–213, 2014, doi: 10.1007/978-1-4939-0467-9_14.
    [40] O. Simonetti et al., “RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus,” Antimicrob Agents Chemother, vol. 52, no. 6, pp. 2205–2211, Jun. 2008, doi: 10.1128/AAC.01340-07/ASSET/43B73626-8D60-45D4-80B7-410634011DC5/ASSETS/GRAPHIC/ZAC0060873730002.JPEG.
    [41] A. G. Abdelhamid and A. E. Yousef, “Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections,” Antibiotics 2023, Vol. 12, Page 1005, vol. 12, no. 6, p. 1005, Jun. 2023, doi: 10.3390/ANTIBIOTICS12061005.
    [42] B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, and R. G. H. H. Nelissen, “Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings,” Bone Joint Res, vol. 6, no. 5, p. 323, May 2017, doi: 10.1302/2046-3758.65.BJR-2016-0308.R1.
    [43] L. D. Bharatula, E. Marsili, S. A. Rice, and J. J. Kwan, “Influence of High Intensity Focused Ultrasound on the Microstructure and c-di-GMP Signaling of Pseudomonas aeruginosa Biofilms,” Front Microbiol, vol. 11, Dec. 2020, doi: 10.3389/FMICB.2020.599407/FULL.
    [44] T. Wang, W. Ma, Z. Jiang, and L. Bi, “The penetration effect of HMME-mediated low-frequency and low-intensity ultrasound against the Staphylococcus aureus bacterial biofilm,” Eur J Med Res, vol. 25, no. 1, pp. 1–11, Dec. 2020, doi: 10.1186/S40001-020-00452-Z/FIGURES/9.
    [45] J. Hu et al., “The synergistic bactericidal effect of vancomycin on UTMD treated biofilm involves damage to bacterial cells and enhancement of metabolic activities OPEN,” 2018, doi: 10.1038/s41598-017-18496-3.
    [46] A. S. Chung et al., “Two-Stage Debridement With Prosthesis Retention for Acute Periprosthetic Joint Infections.,” Journal of Arthroplasty, vol. 34, no. 6, pp. 1207–1213, Jun. 2019, doi: 10.1016/J.ARTH.2019.02.013.
    [47] H. M. Mian, J. G. Lyons, J. Perrin, A. W. Froehle, and A. B. Krishnamurthy, “A review of current practices in periprosthetic joint infection debridement and revision arthroplasty,” Arthroplasty, vol. 4, no. 1, Dec. 2022, doi: 10.1186/S42836-022-00136-5.
    [48] T. Mahmud, M. C. Lyons, D. D. Naudie, S. J. MacDonald, and R. W. McCalden, “Assessing the Gold Standard: A Review of 253 Two-Stage Revisions for Infected TKA,” Clin Orthop Relat Res, vol. 470, no. 10, p. 2730, 2012, doi: 10.1007/S11999-012-2358-8.
    [49] I. Vielgut, G. Schwantzer, A. Leithner, P. Sadoghi, U. Berzins, and M. Glehr, “Successful Two-Stage Exchange Arthroplasty for Periprosthetic Infection Following Total Knee Arthroplasty: The Impact of Timing on Eradication of Infection,” Int J Med Sci, vol. 18, no. 4, p. 1000, 2021, doi: 10.7150/IJMS.47655.
    [50] A. Premkumar et al., “Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States,” J Arthroplasty, vol. 36, no. 5, pp. 1484-1489.e3, May 2021, doi: 10.1016/J.ARTH.2020.12.005.
    [51] S. Klouche, E. Sariali, and P. Mamoudy, “Analyse du coût des reprises des prothèses totales de hanche infectées,” Revue de Chirurgie Orthopédique et Traumatologique, vol. 96, no. 2, pp. 167–175, Apr. 2010, doi: 10.1016/J.RCOT.2010.02.005.
    [52] K. M. D. Merollini, R. W. Crawford, and N. Graves, “Surgical treatment approaches and reimbursement costs of surgical site infections post hip arthroplasty in Australia: A retrospective analysis,” BMC Health Serv Res, vol. 13, no. 1, pp. 1–7, Mar. 2013, doi: 10.1186/1472-6963-13-91/TABLES/6.
    [53] K. R. Berend, A. V. Lombardi, M. J. Morris, A. G. Bergeson, J. B. Adams, and M. A. Sneller, “Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality hip,” Clin Orthop Relat Res, vol. 471, no. 2, pp. 510–518, Sep. 2013, doi: 10.1007/S11999-012-2595-X/METRICS.
    [54] I. Dzaja, J. Howard, L. Somerville, and B. Lanting, “Functional outcomes of acutely infected knee arthroplasty: a comparison of different surgical treatment options,” Canadian Journal of Surgery, vol. 58, no. 6, p. 402, Dec. 2015, doi: 10.1503/CJS.017614.
    [55] F. R. Young, “Cavitation,” Nov. 1999, doi: 10.1142/P172.
    [56] “Cavitation and Bubble Dynamics - Christopher E. Brennen - Google 圖書.” Accessed: Nov. 18, 2024. [Online]. Available: https://books.google.com.tw/books?hl=zh-TW&lr=&id=yRhaAQAAQBAJ&oi=fnd&pg=PR11&ots=O9sLtFsbh6&sig=zig66_JcuaPJ92ZfaLhVJYXF12Y&redir_esc=y#v=onepage&q&f=false
    [57] M. Plesset, A. P.-A. review of fluid mechanics, and undefined 1977, “Bubble dynamics and cavitation,” ui.adsabs.harvard.edu, Accessed: Nov. 18, 2024. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1977AnRFM...9..145P/
    [58] W. Lauterborn, R. M.-P. Ultrasonics, and undefined 2023, “Acoustic cavitation: bubble dynamics in high-power ultrasonic fields,” Elsevier, Accessed: Nov. 18, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128202548000051
    [59] C. Brennen, “Cavitation and bubble dynamics,” 2014, Accessed: Nov. 18, 2024. [Online]. Available: https://books.google.com/books?hl=zh-TW&lr=&id=yRhaAQAAQBAJ&oi=fnd&pg=PR11&ots=O9sLtGkag_&sig=Z76stMYF3uCYAuZl5CF435qlY24
    [60] B. Verhaagen, D. R.-U. sonochemistry, and undefined 2016, “Measuring cavitation and its cleaning effect,” ElsevierB Verhaagen, DF RivasUltrasonics sonochemistry, 2016•Elsevier, Accessed: Nov. 18, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1350417715000723
    [61] L. Van Wijngaarden, “Mechanics of collapsing cavitation bubbles,” Ultrason Sonochem, vol. 29, pp. 524–527, Mar. 2016, doi: 10.1016/J.ULTSONCH.2015.04.006.
    [62] M. Wiklund, R. Green, M. O.-L. on a Chip, and undefined 2012, “Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices,” pubs.rsc.orgM Wiklund, R Green, M OhlinLab on a Chip, 2012•pubs.rsc.org, Accessed: Nov. 18, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/1991/lc/c2lc40203c
    [63] J. L.-J. of sound and vibration and undefined 1978, “Acoustic streaming,” ElsevierJ LighthillJournal of sound and vibration, 1978•Elsevier, Accessed: Nov. 18, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0022460X78903887
    [64] S. S.-L. on a Chip and undefined 2012, “Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods,” pubs.rsc.orgSS SadhalLab on a Chip, 2012•pubs.rsc.org, Accessed: Nov. 18, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2012/lc/c2lc40202e
    [65] T. Laurell and A. Lenshof, “Microscale acoustofluidics,” 2014, Accessed: Nov. 18, 2024. [Online]. Available: https://books.google.com/books?hl=zh-TW&lr=&id=XFnsBQAAQBAJ&oi=fnd&pg=PR7&ots=K3Twj9wOao&sig=Sbri86ZkvZmTuA3ZqDWGXUSWZx4
    [66] W. L. Nyborg, “Acoustic Streaming,” in Nonlinear Acoustics, Cham: Springer Nature Switzerland, 2024, pp. 205–229. doi: 10.1007/978-3-031-58963-8_7.
    [67] H. Starritt, F. Duck, & V. H.-P. in M., and undefined 1991, “Forces acting in the direction of propagation in pulsed ultrasound fields,” iopscience.iop.orgHC Starritt, FA Duck, VF HumphreyPhysics in Medicine & Biology, 1991•iopscience.iop.org, Accessed: Nov. 19, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/0031-9155/36/11/006/meta
    [68] H. C. Starritt, F. A. Duck, and V. F. Humphrey, “An experimental investigation of streaming in pulsed diagnostic ultrasound beams,” Ultrasound Med Biol, vol. 15, no. 4, pp. 363–373, Jan. 1989, doi: 10.1016/0301-5629(89)90048-3.
    [69] “Physics of Ultrasound - NYSORA.” Accessed: Nov. 19, 2024. [Online]. Available: https://www.nysora.com/topics/equipment/physics-of-ultrasound/
    [70] G. Ter Haar, “Therapeutic ultrasound,” European Journal of Ultrasound, vol. 9, no. 1, pp. 3–9, Mar. 1999, doi: 10.1016/S0929-8266(99)00013-0.
    [71] R. Chopra, K. Tang, M. Burtnyk, … A. B.-P. in M., and undefined 2009, “Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback,” iopscience.iop.orgR Chopra, K Tang, M Burtnyk, A Boyes, L Sugar, S Appu, L Klotz, M BronskillPhysics in Medicine & Biology, 2009•iopscience.iop.org, Accessed: Nov. 19, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/0031-9155/54/9/002/meta
    [72] L. E. Maggi et al., “Thermal Effect of Therapeutic Ultrasound on Muscle-Bone Interface of Swine Tissue (Sus Scrofa Domesticus) with Metallic Implant,” IFMBE Proc, vol. 83, pp. 2413–2416, 2022, doi: 10.1007/978-3-030-70601-2_356/FIGURES/3.
    [73] L. Bharatula, S. Rice, E. Marsili, J. K.-T. J. of the, and undefined 2019, “Sounding out bacteria: microstructural effects of therapeutic ultrasound on bacterial biofilms,” pubs.aip.org, Accessed: Nov. 19, 2024. [Online]. Available: https://pubs.aip.org/asa/jasa/article-abstract/145/3_Supplement/1894/704675
    [74] S. Sezgin, “The Use of Therapeutic Ultrason in Control of Biofilm Infections,” Aurum Journal of Health Sciences, vol. 2, no. Supplement 1 (Congress issue), pp. 33–36, Sep. 2020, Accessed: Nov. 19, 2024. [Online]. Available: https://dergipark.org.tr/en/pub/ajhs/issue/56747/793096
    [75] T. Ibelli, S. Templeton, and N. Levi-Polyachenko, “Progress on utilizing hyperthermia for mitigating bacterial infections,” International Journal of Hyperthermia, vol. 34, no. 2, pp. 144–156, Feb. 2018, doi: 10.1080/02656736.2017.1369173.
    [76] T. Tsuchido, N. Katsui, A. Takeuchi, M. Takano, and I. Shibasaki, “Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment,” Appl Environ Microbiol, vol. 50, no. 2, pp. 298–303, 1985, doi: 10.1128/AEM.50.2.298-303.1985.
    [77] S. Menezes and P. Teixeira, “Lethal interaction between heat and methylene blue in escherichia coli,” International Journal of Hyperthermia, vol. 8, no. 5, pp. 689–699, 1992, doi: 10.3109/02656739209038004.
    [78] W. G. Pitt, M. O. McBride, J. K. Lunceford, R. J. Roper, and R. D. Sagers, “Ultrasonic enhancement of antibiotic action on gram-negative bacteria,” Antimicrob Agents Chemother, vol. 38, no. 11, pp. 2577–2582, 1994, doi: 10.1128/AAC.38.11.2577.
    [79] A. M. Rediske, W. C. Hymas, R. Wilkinson, and W. G. Pitt, “Ultrasonic enhancement of antibiotic action on several species of bacteria,” J Gen Appl Microbiol, vol. 44, no. 4, pp. 283–288, 1998, doi: 10.2323/JGAM.44.283.
    [80] S. S. Phull, A. P. Newman, J. P. Lorimer, B. Pollet, and T. J. Mason, “The development and evaluation of ultrasound in the biocidal treatment of water,” Ultrason Sonochem, vol. 4, no. 2, pp. 157–164, Apr. 1997, doi: 10.1016/S1350-4177(97)00029-1.
    [81] C. M. Runyan, J. C. Carmen, B. L. Beckstead, J. L. Nelson, R. A. Robison, and W. G. Pitt, “Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa,” J Gen Appl Microbiol, vol. 52, no. 5, pp. 295–301, 2006, doi: 10.2323/JGAM.52.295.
    [82] J. Carmen, B. Roeder, J. Nelson, … R. O.-A. journal of, and undefined 2005, “Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics,” Elsevier, Accessed: Nov. 20, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0196655304005747?casa_token=6RCWnJOH3CsAAAAA:IrTRCKJ8MCfwc0XE7aarlAzjFR-lGUdNSrOhm30qpEpWiwIFBWQ1I1dmtQYR_qqypOK39SFDRg
    [83] F. Kirzhner, Y. Zimmels, A. Malkovskaja, and J. Starosvetsky, “Removal of microbial biofilm on Water Hyacinth plants roots by ultrasonic treatment,” Ultrasonics, vol. 49, no. 2, pp. 153–158, Feb. 2009, doi: 10.1016/J.ULTRAS.2008.09.004.
    [84] T. A. Bigelow, T. Northagen, T. M. Hill, and F. C. Sailer, “The Destruction of Escherichia Coli Biofilms Using High-Intensity Focused Ultrasound,” Ultrasound Med Biol, vol. 35, no. 6, pp. 1026–1031, Jun. 2009, doi: 10.1016/j.ultrasmedbio.2008.12.001.
    [85] K. R. Lattwein, H. Shekhar, J. J. P. Kouijzer, W. J. B. van Wamel, C. K. Holland, and K. Kooiman, “Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections,” Feb. 01, 2020, Elsevier USA. doi: 10.1016/j.ultrasmedbio.2019.09.011.
    [86] S. W. Ohl, E. Klaseboer, and B. C. Khoo, “Bubbles with shock waves and ultrasound: A review,” Interface Focus, vol. 5, no. 5, pp. 1–15, Oct. 2015, doi: 10.1098/RSFS.2015.0019.
    [87] B. H. T. Goh et al., “High-speed imaging of ultrasound-mediated bacterial Biofilm Disruption,” IFMBE Proc, vol. 45, pp. 533–536, 2015, doi: 10.1007/978-3-319-11128-5_133.
    [88] C. Zhu et al., “Ultrasound-targeted microbubble destruction enhances human β-defensin 3 activity against antibiotic-resistant staphylococcus biofilms,” Inflammation, vol. 36, no. 5, pp. 983–996, Oct. 2013, doi: 10.1007/S10753-013-9630-2/METRICS.
    [89] Y. Dong, S. Chen, Z. Wang, N. Peng, and J. Yu, “Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm,” Journal of Antimicrobial Chemotherapy, vol. 68, no. 4, pp. 816–826, Apr. 2013, doi: 10.1093/JAC/DKS490.
    [90] M. G. Sugiyama et al., “Lung ultrasound and microbubbles enhance aminoglycoside efficacy and delivery to the lung in Escherichia coli-induced pneumonia and acute respiratory distress syndrome,” Am J Respir Crit Care Med, vol. 198, no. 3, pp. 404–408, Aug. 2018, doi: 10.1164/RCCM.201711-2259LE.
    [91] J. Hu et al., “The synergistic bactericidal effect of vancomycin on UTMD treated biofilm involves damage to bacterial cells and enhancement of metabolic activities,” Scientific Reports 2017 8:1, vol. 8, no. 1, pp. 1–10, Jan. 2018, doi: 10.1038/s41598-017-18496-3.
    [92] H. Guo, Z. Wang, Q. Du, P. Li, Z. Wang, and A. Wang, “Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms,” Int J Nanomedicine, vol. 12, pp. 4679–4690, Jun. 2017, doi: 10.2147/IJN.S134525.
    [93] H. Horsley et al., “Ultrasound-activated microbubbles as a novel intracellular drug delivery system for urinary tract infection,” Journal of Controlled Release, vol. 301, pp. 166–175, May 2019, doi: 10.1016/J.JCONREL.2019.03.017.
    [94] E. Ronan, N. Edjiu, O. Kroukamp, G. Wolfaardt, and R. Karshafian, “USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms,” Ultrasonics, vol. 69, pp. 182–190, Jul. 2016, doi: 10.1016/J.ULTRAS.2016.03.017.
    [95] L. Xin et al., “Ultrasound-Launched Targeted Nanoparticle Enhances Antibacterial Sonodynamic Therapy for Effective Eradication of Pseudomonas aeruginosa Biofilm,” BIO Integration, vol. 5, no. 1, 2024, doi: 10.15212/bioi-2024-0001.
    [96] I. Ashkenazi et al., “Nanoparticle ultrasonication: a promising approach for reducing bacterial biofilm in total joint infection—an in vivo rat model investigation,” Arthroplasty, vol. 6, no. 1, Dec. 2024, doi: 10.1186/s42836-024-00279-7.
    [97] Z. Zhang et al., “Synergistic antibacterial effects of ultrasound combined nanoparticles encapsulated with cellulase and levofloxacin on Bacillus Calmette-Guérin biofilms,” Front Microbiol, vol. 14, 2023, doi: 10.3389/fmicb.2023.1108064.
    [98] A. Upadhyay and S. V. Dalvi, “Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications,” Ultrasound Med Biol, vol. 45, no. 2, pp. 301–343, Feb. 2019, doi: 10.1016/J.ULTRASMEDBIO.2018.09.022/ASSET/9590C197-CE3D-40A7-B089-8ACF110913CE/MAIN.ASSETS/GR7.JPG.
    [99] C. C. Chen and M. A. Borden, “The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces,” Biomaterials, vol. 32, no. 27, pp. 6579–6587, Sep. 2011, doi: 10.1016/J.BIOMATERIALS.2011.05.027.
    [100] D. L. Miller et al., “Bioeffects considerations for diagnostic ultrasound contrast agents,” Journal of Ultrasound in Medicine, vol. 27, no. 4, pp. 611–632, 2008, doi: 10.7863/JUM.2008.27.4.611.
    [101] J. Ivey, E. Gardner, J. Fowlkes, … J. R.-U. in medicine, and undefined 1995, “Acoustic generation of intra-arterial contrast boluses,” Elsevier, Accessed: Nov. 20, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/030156299500015J
    [102] V. S.-A. drug delivery reviews and undefined 2008, “Response of contrast agents to ultrasound,” ElsevierV SborosAdvanced drug delivery reviews, 2008•Elsevier, Accessed: Nov. 20, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169409X08000793
    [103] D. Miller, J. Q.-U. in medicine & biology, and undefined 2001, “Lysis and sonoporation of epidermoid and phagocytic monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies,” Elsevier, Accessed: Nov. 20, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301562901004045
    [104] W.-S. Cho et al., “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicol Appl Pharmacol, vol. 236, no. 1, pp. 16–24, 2009, doi: https://doi.org/10.1016/j.taap.2008.12.023.
    [105] H. S. Sharma, S. Hussain, J. Schlager, S. F. Ali, and A. Sharma, “Influence of Nanoparticles on Blood–Brain Barrier Permeability and Brain Edema Formation in Rats,” in Brain Edema XIV, Z. Czernicki, A. Baethmann, U. Ito, Y. Katayama, T. Kuroiwa, and D. Mendelow, Eds., Vienna: Springer Vienna, 2010, pp. 359–364.
    [106] A. K. Gupta and S. Wells, “Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies,” IEEE Trans Nanobioscience, vol. 3, no. 1, pp. 66–73, 2004.
    [107] V. Kumar, N. Sharma, and S. S. Maitra, “In vitro and in vivo toxicity assessment of nanoparticles,” Int Nano Lett, vol. 7, no. 4, pp. 243–256, Dec. 2017, doi: 10.1007/s40089-017-0221-3.
    [108] S. Guo, Z. Ya, P. Wu, and M. Wan, “A review on acoustic vortices: Generation, characterization, applications and perspectives,” J Appl Phys, vol. 132, no. 21, Dec. 2022, doi: 10.1063/5.0107785/2837769.
    [109] B. T. Hefner and P. L. Marston, “An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems,” J Acoust Soc Am, vol. 106, no. 6, pp. 3313–3316, Dec. 1999, doi: 10.1121/1.428184.
    [110] A. Anhäuser, R. Wunenburger, and E. Brasselet, “Acoustic rotational manipulation using orbital angular momentum transfer,” Phys Rev Lett, vol. 109, no. 3, p. 034301, Jul. 2012, doi: 10.1103/PHYSREVLETT.109.034301/FIGURES/3/MEDIUM.
    [111] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and S. Subramanian, “Holographic acoustic elements for manipulation of levitated objects,” Nature Communications 2015 6:1, vol. 6, no. 1, pp. 1–7, Oct. 2015, doi: 10.1038/ncomms9661.
    [112] C. R. P. Courtney et al., “Independent trapping and manipulation of microparticles using dexterous acoustic tweezers,” Appl Phys Lett, vol. 104, no. 15, Apr. 2014, doi: 10.1063/1.4870489/130586.
    [113] Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, and T. Brunet, “Flat acoustics with soft gradient-index metasurfaces,” Nature Communications 2019 10:1, vol. 10, no. 1, pp. 1–6, Jan. 2019, doi: 10.1038/s41467-018-07990-5.
    [114] B. Liu, Z. Zhou, Y. Wang, T. Zentgraf, Y. Li, and L. Huang, “Experimental verification of the acoustic geometric phase,” Appl Phys Lett, vol. 120, no. 21, May 2022, doi: 10.1063/5.0091474/2833515.
    [115] T. Wang, M. Ke, W. Li, Q. Yang, C. Qiu, and Z. Liu, “Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure,” Appl Phys Lett, vol. 109, no. 12, Sep. 2016, doi: 10.1063/1.4963185/32286.
    [116] S. Jiménez-Gambín, N. Jiménez, J. M. Benlloch, and F. Camarena, “Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–13, Dec. 2019, doi: 10.1038/s41598-019-56369-z.
    [117] L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 84, no. 6, p. 065601, Dec. 2011, doi: 10.1103/PHYSREVE.84.065601/FIGURES/1/THUMBNAIL.
    [118] J. L. Thomas, T. Brunet, and F. Coulouvrat, “Generalization of helicoidal beams for short pulses,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 81, no. 1, p. 016601, Jan. 2010, doi: 10.1103/PHYSREVE.81.016601/FIGURES/12/THUMBNAIL.
    [119] F. G. Mitri, “Potential-well model in acoustic tweezers-comment,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 58, no. 3, pp. 662–665, Mar. 2011, doi: 10.1109/TUFFC.2011.1850.
    [120] D. Baresch, J. L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys Rev Lett, vol. 116, no. 2, p. 024301, Jan. 2016, doi: 10.1103/PHYSREVLETT.116.024301/FIGURES/4/THUMBNAIL.
    [121] S. T. Kang and C. K. Yeh, “Potential-well model in acoustic tweezers,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 57, no. 6, pp. 1451–1459, Jun. 2010, doi: 10.1109/TUFFC.2010.1564.
    [122] M. Baudoin et al., “Spatially selective manipulation of cells with single-beam acoustical tweezers,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-18000-y.
    [123] S. Guo et al., “Decreased clot debris size and increased efficiency of acoustic vortex assisted high intensity focused ultrasound thrombolysis,” J Appl Phys, vol. 128, no. 9, Sep. 2020, doi: 10.1063/5.0010842/157803.
    [124] P. Wu et al., “Focused Acoustic Vortex-Regulated Composite Nanodroplets Combined with Checkpoint Blockade for High-Performance Tumor Synergistic Therapy,” ACS Appl Mater Interfaces, vol. 14, no. 27, pp. 30466–30479, Jul. 2022, doi: 10.1021/ACSAMI.2C02137/SUPPL_FILE/AM2C02137_SI_001.PDF.
    [125] M. A. Ghanem et al., “Noninvasive acoustic manipulation of objects in a living body,” Proc Natl Acad Sci U S A, vol. 117, no. 29, pp. 16848–16855, Jul. 2020, doi: 10.1073/PNAS.2001779117/SUPPL_FILE/PNAS.2001779117.SM08.AVI.
    [126] M. Baudoin et al., “Spatially selective manipulation of cells with single-beam acoustical tweezers,” Nature Communications 2020 11:1, vol. 11, no. 1, pp. 1–10, Aug. 2020, doi: 10.1038/s41467-020-18000-y.
    [127] W. C. Lo, C. H. Fan, Y. J. Ho, C. W. Lin, and C. K. Yeh, “Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles,” Proc Natl Acad Sci U S A, vol. 118, no. 4, p. e2023188118, Jan. 2021, doi: 10.1073/PNAS.2023188118/SUPPL_FILE/PNAS.2023188118.SM09.AVI.
    [128] S. Guo et al., “Decreased clot debris size and increased efficiency of acoustic vortex assisted high intensity focused ultrasound thrombolysis,” J Appl Phys, vol. 128, no. 9, Sep. 2020, doi: 10.1063/5.0010842/157803.
    [129] X. D. Fan and L. Zhang, “Trapping Force of Acoustical Bessel Beams on a Sphere and Stable Tractor Beams,” Phys Rev Appl, vol. 11, no. 1, p. 014055, Jan. 2019, doi: 10.1103/PHYSREVAPPLIED.11.014055/FIGURES/7/THUMBNAIL.
    [130] R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 2019 575:7782, vol. 575, no. 7782, pp. 320–323, Nov. 2019, doi: 10.1038/s41586-019-1739-5.
    [131] X. Xue, X. Hong, Z. Li, C. X. Deng, and J. Fu, “Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation,” Biomaterials, vol. 134, pp. 22–30, Jul. 2017, doi: 10.1016/J.BIOMATERIALS.2017.04.039.
    [132] A. Popescu and R. J. Doyle, “The Gram stain after more than a century,” Biotech Histochem, vol. 71, no. 3, pp. 145–151, 1996, doi: 10.3109/10520299609117151.
    [133] J. Robertson, C. McGoverin, F. Vanholsbeeck, and S. Swift, “Optimisation of the protocol for the liVE/DEAD®BacLightTM bacterial viability kit for rapid determination of bacterial load,” Front Microbiol, vol. 10, no. APR, p. 448819, Apr. 2019, doi: 10.3389/FMICB.2019.00801/BIBTEX.
    [134] B. J. Harrington and G. J. Hageage, “Calcofluor White: A Review of its Uses and Applications in Clinical Mycology and Parasitology,” Lab Med, vol. 34, no. 5, pp. 361–367, May 2003, doi: 10.1309/EPH2TDT8335GH0R3.
    [135] E. Ronan, N. Edjiu, O. Kroukamp, G. Wolfaardt, and R. Karshafian, “USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms,” Ultrasonics, vol. 69, pp. 182–190, Jul. 2016, doi: 10.1016/j.ultras.2016.03.017.
    [136] J. Utoh and H. Harasaki, “Effects of Temperature on Phagocytosis of Human and Calf Polymorphonuclear Leukocytes,” Artif Organs, vol. 16, no. 4, pp. 377–381, Aug. 1992, doi: 10.1111/J.1525-1594.1992.TB00535.X.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE