| 研究生: |
陳辭修 Chen, Tzu-Hsiu |
|---|---|
| 論文名稱: |
三層I型微流道流動特性之研究 A study of flow characters in a three-layer I-type microchannel |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 微流體 、整流 、平整界面 |
| 外文關鍵詞: | microfluidic, rectifying, smooth interface |
| 相關次數: | 點閱:70 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微機電系統(Micro-Electro-Mechanical System, MEMS)技術迅速發展,並引發了微全分析系統(Micro Total Analysis System, μ-TAS)的研究,此系統具有體積小、檢測只需少量樣本、反應時間快、便於攜帶等優點,若再結合新開發的微製程技術(如CO2)雷射製程便可達到減少成本、可大量生產等效果,且目前已有細胞的分離、檢測、微型燃料電池等各方面應用。
本研究基於為了讓兩道微流體可以有平整、平穩的交界面設計出I字型3D匯流晶片,希望藉由多了中間層的設計可以整流流體,使其兩道流體接觸後的交界面是平整的,另外也希望此設計能有其它更廣泛的可能應用,因此學生對I字型管道進行一些流場上的探討,如平整的界面可應用於擴散分離或微型燃料電池,多了中間層的設計可應用於細胞養殖等等。
由實驗結果與數值模擬成功交互比對驗證,本研究的微流體晶片可以使兩道微流體接觸後擁有平整的交界面。
Micro-Electro-Mechanical-System (MEMS) has developed rapidly in recent years, and it facilitates the study of micro total analysis system (μ-TAS). The system offers several potential advantages such as portability, low cost, small volume of samples and reagents, short analysis time, and easier to operate and so on. Also, the system has various applications for cell separation, detection and micron fuel cell etc.
The purpose of this study was let the interface of the two incoming fluid shows smooth and stable. Therefore, we designed the “I-type 3D microchip” which can rectify the flow and makes the interface becoming more smooth by the structure of the middle-plane. The smooth interface is applied in diffusion and separation or micron fuel cell. Furthermore, the design of middle-plane can also use for cell cultivation.
1. R. P. Feynman, “There's Plenty of Room at the Bottom”, the annual meeting of the American Physical Society, Pasadena, CA, December 29,(1959).
2. M. S. Talary, J. P. H. Burt, P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, S191-S203, (1998).
3. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, “An integrated nanoliter DNA analysis device”, Science, 282, 484-487, (1998).
4. 許家瑋, “無薄膜Y型微流道過氧化氫燃料電池性能分析, ”國立台灣大學應用力學研究所, (2006).
5. Falin Chen, M. H. Chang, C. W. Hsu, “Analysis of membraneless microfuel cell using decompositionof hydrogen peroxide in a Y-shaped microchannel”, Electrochimica Acta, 52, 7270–7277, (2007).
6. 顧安平, “三維匯流微流管道之流場研究”, 國立成功大學航空太空工程學系, (2007).
7. J. P. Brody, P. Yager, “Diffusion-based extraction in a microfabricated device”, Sensors and Actuators A , 58, 13-18,(1997).
8. A. E. Kamholz, B. H. Weigl, B. A. Finlayson, P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel:the T-sensor”, Analytical Chemistry, 71, 5340-5347,(1999).
9. P. Yager,“Transverse duffusion in microfluidic systems”,
Lab-on-a-chip,(2003).
10. J. L. Cohen, D. A. Westly, A. Pechenik, H. D. Abru˜na, “Fabrication and preliminary testing of a planar membraneless
microchannel fuel cell”, Journal of Power Sources, 139, 96–105, (2005).
11. K. Liu, R. Pitchimani, D. Dang, K. Bayer, T. Harrington, D. Pappas, “Cell Culture Chip Using Low-Shear Mass Transport”, Langmuir, 24, 5955-5960, (2008).
12. H. C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysical, 20, 193-219, (1977).
13. S. Wereley, I. Whitacre, R. Bashir, “DEP particle dynamics and the steady drag assumption”, Nanotechnology, 1, 320-323, (2004).
14. X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannel”, Experimental Heat transfer, 7, 249-264, (1994).
15. F. M. White, “Viscous Fluid Flow”, 3rd ed McGraw. Hill, New York, (2006).
16. A. Li, S. H. Chan,N. T. Nguyen, “ Journal of Micromechanics and Microengineering”,17,1107-1113, (2007).
17. Nimai C. Nayak, Y. C. Lam, C. Y . Yue,and Ayan T. Sinha, “CO2-laser micromachining of PMMA: theeffect of polymer molecular weight”, “ Journal of Micromechanics and Microengineering”,18, (2008).