| 研究生: |
楊承勳 Yang, Cheng-Xun |
|---|---|
| 論文名稱: |
透過靜力加載試驗推估橋梁動力特性可行性研究 Feasibility Study on Estimating Bridge Dynamic Characteristics through Static Loading Test |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | SAP2000 、實驗 、模態分析 、數值模擬 、等值參數 |
| 外文關鍵詞: | SAP2000, Experiment, Modal analysis, Numerical simulation, Equivalent Parameters |
| 相關次數: | 點閱:38 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處特殊的地理位置,地形險峻、人口擁擠,橋梁扮演著連接都市、跨越河川、山脈的重要結構,橋梁相較於一般結構有著較長週期、更為柔軟的結構特性,較容易受到風力、車載等影響,為了掌握橋梁之動態特性,除了可以透過許多有限元素分析軟體進行數值模擬外,更可以搭配簡化、縮小之模型進行風洞、振動台試驗,並以相似律推估真實結構之動力特性,然而實際模型不管是真實結構或是縮尺模型,施工、建造時存在許多不確定因素,進而導致了原設計預估結果與真實結構存在落差,因此橋梁常透過靜力加載的現地實驗來驗證結構的安全性。本文主要以數值模擬搭配實驗的方式,驗證以靜力加載試驗結果推估結構動力特性的可行性,除了可以藉由推估之動力特性,探討結構勁度的變化程度,透過靜力加載實驗求取真實試體之等值撓曲剛度,在比對等值頻率與識別頻率相近後,亦可用於建立真實試體的簡化數位分身模型,以利未來變形與控制力的預估。本文採用SAP2000有限元素分析軟體進行數值模型的建立與模擬,並對真實試體分別進行靜力及動力實驗,以獲得試體的靜力反應與模態特性,比較以靜力反應推估的等值撓曲剛度及等值頻率是否能擬合真實模型的動力特性,並探討此方法的優點及限制,最終以真實試體反應修正數值模型,除了可以更深入了解試體的特性,修正後的數值模型更可以協助未來實驗的預估及模擬。
Taiwan is located in a unique geographical position with rugged terrain and dense population. Bridges play a crucial role in connecting urban areas, spanning rivers and mountains. Compared to typical structures, bridges have longer period and more flexible structural characteristics, making them more susceptible to influence such as wind and vehicle loads.
In order to understand the dynamic characteristics of bridges, numerical simulations can be conducted using various finite element analysis software. Additionally, simplified and scaled models can be used for wind tunnel and shake table tests to estimate the dynamic properties of real structures based on similarity principles. However, uncertainties arise during the construction, both in real structures and scaled models, leading to discrepancies between the predicted behavior of the original design and the actual structure. Consequently, the safety of structures is often verified through field experiments involving static loading on bridges.
This paper primarily uses a combination of numerical simulations and experiments to validate the feasibility of estimating dynamic characteristics from static loading test results. Firstly, a numerical model is established and simulated using the SAP2000 finite element analysis software. Both static and dynamic tests are conducted on the model to obtain their static responses and modal properties. The equivalent stiffness and equivalent frequency estimated from the static response are compared to the dynamic characteristics of the real model. The advantages and limitations of this method are also discussed. Finally, the numerical model is adjusted based on the actual model responses to conduct subsequent numerical analysis and assist in the prediction of subsequent experiments.
[1]. JAKE ELLISON, 2015, A Tacoma Narrows 'Galloping Gertie' bridge-collapse surprise, 75 years later, seattlepi.com. [線上]
[2]. R. C. Hibbeler, 2010, “Mechanics of Materials.”, Prentice Hall, Inc.
[3]. Kenneth M. Leet, Chia-Ming Uang, Joel T Lannin, and Anne M. Gilbert, 2017, “Fundamentals of Structural Analysis.”, McGraw Hill, Inc.
[4]. Chopra Anil K., 2011, “Dynamics of Structures: Theory and Applications to Earthquake Engineering.”, Prentice Hall, Inc.
[5]. 余佩儒,「探討國際上數位分身 (Digital Twin) 在不同領域的應用」,經濟 前瞻186, 91-95(2019)。
[6]. Gargaro D., Rainieri C and Fabbrocino G., 2017,“Structural and seismic monitoring of the “Cardarelli” Hospital in Campobasso.” Procedia engineering, 199: 936-941.
[7]. Lantsoght, E. O. L., C. van der Veen, D. A. Hordijk, and A. de Boer., “State-of-the-art on load testing of concrete bridges.”, Engineering Structures, 150: 231–241, 2017.
[8]. AASHTO, 2016, “The manual for bridge evaluation with 2016 interim revisions.”, Washington, D.C., AASHTO.
[9]. Sreenivas Alampalli, Dan M. Frangopol, Jesse Grimson, Marvin W. Halling, David E. Kosnik, Eva O. L. Lantsoght, David Yang and Y. Edward Zhou, 2021, “Bridge Load Testing: State-of-the-Practice.”, Journal of Bridge Engineering, 26(3): 03120002.
[10]. Alampalli, S., D. M. Frangopol, J. Grimson, D. Kosnik, M. Halling, E. O. L. Lantsoght, J. S. Weidner, D. Y. Yang, and Y. E. Zhou., 2019, “Primer on bridge load testing”, Transportation Research Circular E-C257. Washington, DC: Transportation Research Board.
[11]. 交通部,「公路鋼筋混凝土結構橋梁之檢測及補強規範」,台北(2018)。
[12]. 陳君瑞,「高屏溪斜張橋行為之研究」,博士論文,國立成功大學土木工程研究所,台南(2005)。
[13]. 洪嘉隆,「單索面斜張橋之衝擊係數分析」,碩士論文,國立成功大學土木工程研究所,台南(2005)。
[14]. 交通部運輸研究所,「混凝土橋梁現地實驗與性能評估」,港灣技術季刊(2019)。
[15]. 蘇奕豪,「預力混凝土粱在不同預力情況下之小載重力學探討」,碩士論文,國立中興大學土木工程研究所,台中(2019)。
[16]. Ming-Hsiang Shih, Wen-Pei Sung, Y. C. Wang, 2018, “Developing a Neutral Equilibrium Device as Dynamic Virtual Piers for an Emergency Relief Bridge”, Journal of Measurements in Engineering, Vol. 6, No. 4, pp. 289-296.
[17]. Ming-Hsiang Shih, Wen-Pei Sung, 2019, “Experimental Verification of Applying Active Control Method as Virtual Support for Relief Bridge”, Advances in Civil Engineering, Volume 2019, Article ID 8505091.
[18]. 施明祥,宋文沛,「控制橋樑變形之臨界平衡裝置及其方法」,中華民國發明專利,專利編號:發明第 I672415 號,專利有效期限 2019 年 9 月 21 日至 2038 年 7 月 26 日。
[19]. 內政部,「耐風設計規範與解說」,中華民國內政部(2014)。
[20]. CSI Knowledge Database, COMPUTERS & STRUCTURES, INC. [線上]。
[21]. MIDORI LP-FJ系列 電阻式位移計規格,三聯科技股份有限公司,[線上]。
[22]. HG-C INSTRUCTION MANUAL, Panasonic, [線上]。
[23]. Optex CD22 Series Instruction manual, Ramco Innovations, [線上]。
[24]. Ming-Hsiang Shih, Wen-Pei Sung, 2014, “Developing Dynamic Digital Image Correlation Technique to Monitor Structural Damage of Old Buildings under External Excitation.”, Shock. Vib. 2014, 954840.
[25]. Tung S-H, Weng M-C, Shih M-H.,2013, “Measuring the in situ deformation of retaining walls by the digital image correlation method.”, Eng Geol 2013, Vol. 166:116–26.